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Abstract—This paper proposes hybrid signal processing
schemes for the uplink cell-free massive MIMO; these schemes
serve to reduce fronthaul loads to obtain a scalable centralized
processing architecture. In this architecture, received signals
of multiple receive antennas at the access points (APs) are
compressed into fewer streams by local spatial signal processing
and then the streams are forwarded to a central processing unit
(CPU) via fronthaul, and the CPU performs scalable processing
for channel estimation and signal detection based on partial
minimum mean squared error (PMMSE). We propose two kinds
of concrete local signal processing methods for this hybrid
processing architecture: one is based on MMSE, and the other
is based on principal component analysis (PCA) with eigenvalue
decomposition (EVD). For the EVD, a local vector selection based
EVD (LVS-EVD) that selects uniform number of eigenvectors
for each AP in a standalone way, and a global vector selection
based EVD (GVS-EVD) that determines the dimensions of the
weight vector of each AP in the CPU, are further considered.
Computer simulations verify the approaches and compare their
effectiveness. In addition, we show that the GVS-EVD scheme can
be operated with significantly reduced fronthaul loads without
severe performance degradation.

Index Terms—Scalable cell-free massive MIMO, Uplink hybrid
signal processing, Fronthaul loads reduction, MMSE, EVD

I. INTRODUCTION

Cell-free massive MIMO (CFmMIMO) is a promising tech-
nology to enhance capacity, reliability and energy efficiency
[1], [2], and can be considered as a candidate architecture for
future mobile communication systems such as beyond 5G [3].
One critical issue to deploy this technology over wide service
area is to have a scalability [4], meaning limited computational
complexity for the signal processing, access control and so
on. In [5], two types of scalable signal processing schemes
have been proposed, and shown that they can realize uplink
signal detection, downlink precoding and channel estimation
for each user efficiently without increasing the amount of
computational complexity per users significantly by employing
dynamic cooperation clustering for the signal processing. One
is central processing where the received signals of all APs
are hauled to the CPU, and CPU operates partial MMSE
(PMMSE). The other is a semi-distributed architecture, which
applies local PMMSE (LP-MMSE) at the AP side and com-
bines the result in the CPU. Although PMMSE requires higher
computational complexity than LPMMSE, it can achieve
higher spectral efficiency. However, a key remaining challenge
is that the fronthaul capacity increases with the number of

APs and the number of antennas of each AP. Given the fact
that fronthaul loads are anticipated to increase in beyond 5G
systems compared to the current values because of increases in
the bandwidth of the wireless access links, efficient schemes
to reduce the fronthaul load will be desirable.

In this paper, we focus on the reduction of the fronthaul
load of scalable central processing for uplink CFmMIMO. Ref.
[6] analyzes the effect of the limited backhaul capacity for
uplink and discusses suitable transmission power control and
combining filter design for maximum ratio combining (MRC)
receiver, and [7] combines AP selection to compute and
forward structure. However, while MRC type receivers allow
simple computations, their spectral efficiency is inferior to
MMSE type receivers [8], [9]. Hence, in this paper we propose
a hybrid processing architecture suitable for the PMMSE in
order to reduce the fronthaul load. In this architecture, the
received signals of multiple receive antennas at the APs are
compressed into fewer streams by a spatial signal processing
and then the streams are forwarded to the CPU via fronthaul.
The CPU performs channel estimation and signal detection
by PMMSE. By designing the number of output ports smaller
than the number of antenna ports of each AP, this can
effectively reduce the fronthaul load. Concretely, two specific
spatial processing schemes are applied to the local processing
of the AP. One is based on MMSE, for which weight vectors
of the local processing are designed to reduce interference
from other UEs to extract signals from specific UEs that have
smaller pathloss. The other is based on PCA with EVD of the
covariance matrix of the received signal vector of each AP.
This sets the eigenvectors with larger eigenvalue as weight
vectors of the local processing to extract the principal com-
ponents at each AP. For selecting the eigenvectors, LVS-EVD
that selects a uniform number of eigenvectors in each AP and a
GVS-EVD that determines the dimensions of the weight vector
of each AP adaptively in the CPU are considered. Computer
simulations in Sec. IV show that the hybrid processing with
these schemes can reduce the fronthaul loads effectively. In
addition, it shows the hybrid processing with GVS-EVD can
be operated with significantly lower fronthaul loads without
severe degradation from conventional PMMSE.

II. SYSTEM MODEL

Consider an uplink CFmMIMO system with L APs with
N antennas each, and K single-antenna UEs that are spatially



multiplexed. The uplink received signal vector of the l-th AP
for the i-th symbol is expressed as follows,

rl(i) = Hls(i) + nl(i), (1)

where Hl is an N x K channel matrix of the l-th AP, of which
the (n, k)-th element, h(l)n,k is the channel response between the
k-th UE and the n-th antenna, and can be expressed as

h
(l)
n,k =

√
βl,kp

(l)
n,k, (2)

where βl,k describes the path gain and large-scale fading
between APs and UEs, and p(l)n,k the small-scale fading, which
additionally depends on the considered antenna element at
that AP. We assume here frequency-flat channels though
generalization to OFDM can be done. s(i) is a K dimensional
transmitted symbol vector of which the k-th element is the
signal of the k-th UE sk(i), and it assumes all the UEs
transmit signals with the equal transmission power. n(i) is
a N dimensional noise vector, of which n-th element is that
of the n-th receive antenna. In the centralized architecture of
CFmMIMO, all the received signals of APs are forwarded to
the CPU via fronthaul, and the purpose of the signal detection
is to detect sk(i) for all UEs from the received signals. The
CPU can also be utilized for channel estimation of each UE
and for generating the combining weight for the detection.
The received signal vectors at the CPU can be written as
y(i) = Hs(i) + n(i), where r(i) = [r1(i), r2(i), · · · rL(i)]T,
H = [HT

1,H
T
2, · · ·HT

L]
Tand n(i) = [n1(i),n2(i), · · ·nL(i)]

T,
respectively. Note that it is assumed that the fronthaul forwards
received signal at sufficient quantization level and the effect
of the quantization noise is negligible.

In PMMSE, the weight vector vk to detect the signal of the
UE k can be written as follows,

vk = (
∑
i∈Dk

Dkĥiĥ
H
i Dk +

1

ρ
Dk)

†Dkĥk, (3)

where hk is the k-th column vector of the matrix H, and
ĥk is its estimate. Dk is a clustering matrix to extract the
corresponding elements of UE k, and it can be written as
Dk = diag[Dk1,Dk2, · · ·DkL]. Dkl expresses the relation-
ship between the UE k and AP l, as follows; if the AP l is
a member of the cluster for UE k, Dkl = IN , and otherwise
0N . † denotes the generalized inverse operation. The set Dk

is defined as Dk = {i,DiDk 6= 0}. ρ is the transmission
power to noise ratio. Then the detected signal of UE k can
be expressed as ŝk(i) = vH

k r(i). In [5], it is discussed that
by utilizing a clustering scheme, the actual computational
complexity of the CPU to detect each UE does not grow with
the number of APs and UEs. For selection of the APs for
each UE k, various clustering schemes have been proposed
[10], [11]. In this paper, we simply assume each UE selects
a uniform number of APs, defined as Z, with higher large-
scale fading factor βl,k. For example, it can be measured if
each AP periodically transmits synchronization signals that are
orthogonal with each other, and associated with cell ID of each
cell in a 3GPP system. The CPU can determine the APs for
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Fig. 1. Architecture of proposed receiver.

each UE if it assumes the UEs report the measured large-scale
fading data periodically.

The fronthaul is required to forward NQ bits from each
AP to the CPU and LNQ bits totally in this centralized
architecture, where Q is the number of bits of the sampled
received signal of each antenna. Hence the fronthaul load
obviously grows with the number of antennas at each AP
and the number of APs, and it becomes severe in large-scale
deployment with a large number of antennas.

III. HYBRID SIGNAL PROCESSING

In order to reduce the fronthaul loads of the centralized
processing, in this section we propose a hybrid signal pro-
cessing architecture for uplink reception. Fig. 1 shows the
architecture of the proposed uplink reception including APs,
CPU and fronthaul. It consists of a local signal processing
unit (LSPU) at each AP and a CPU that collects the output
of the LSPU of all APs through fronthaul and detects the
transmitted symbols of all UEs. The LSPU combines signals
of N receive antennas with weight matrix Ul to obtain Pl

outputs. The Pl dimensional output signal vector of the LSPU
can be written as yl(i) = Ulrl(i) and it is forwarded through
the fronthaul. Then, the CPU detects signals based on the
following equivalent channel expression including propagation
channel and local signal processing weights of each AP after
collecting the fronthaul data of all APs;

y(i) = H(E)s(i) + z(i), (4)

where,

y(i) =


y1(i)
y2(i)

...
yL(i)

 ,H(E) =


U1H1

U2H2

...
ULHL

 , z(i) =


U1n1(i)
U2n2(i)

...
ULnL(i)

 .(5)

Based on the equation, the CPU can detect the signals by
general MIMO detection algorithms. To keep the scalability
of the CPU processing, PMMSE can be applied by rewriting
the the weight vector v(HP)

k corresponding to (3) as follows:

v(HP)
k = (

∑
i∈Dk

D(HP)
k ĥ(E)

i ĥ(E)H
i D(HP)

k + R(ZD)
k )†D(HP)

k ĥ(E)
k , (6)



where ĥ(E)
k is the estimated vector of the equivalent channel of

UE k and it corresponds to the k-th column of H(E). Note that
the equivalent channel vector h(E) can be estimated by utilizing
the pilot signals and corresponding received signal parts by as-
suming that the received pilot signal part of the received signal
processed and forwarded in the same manner as the remaining
signal parts. R(ZD)

k is a covariance matrix of the corresponding
part of the equivalent noise vector z(i) after clustering and it
can be written as R(ZD)

k = D(HP)
k E[z(i)zH(i)]D(HP)

k . The clus-
tering matrix D(HP)

k also arrays the sub-matrix Dkl diagonally
as Dk, but the size of the sub-matrix has changed from N×N
to Pl×Pl. It is also worth mentioning that, the clustering can
be operated independently from the local signal processing
weights by applying clustering based on the large-scale fading
estimated from the UE measurement reports as discussed in
the section II. For this purpose, the APs require to forward the
reported data measured by UEs to CPU separately from the
data and pilot signal part, but this amount is small, due to the
slow change of the large-scale fading. The spectral efficiency
of each UE can be written as C (HP)

k = log2(1 + γ(HP)
k ), where

γ(HP)
k is the post SINR of the UE calculated as follows.

γ(HP)
k =

ρ|v(HP)
k Dkĥ(E)

k |2

ρ(
K∑

k′ 6=k

|v(HP)
k Dkh(E)

k′ |2+|v(HP)
k Dkh̃(E)

k |2)+|v
(HP)
k DkU|2

,(7)

where h̃k = hk − ĥk, and U = diag[U1, · · ·Ul].
By simply setting Pl ≤ N for all APs, the fronthaul loads

can be reduced. In order to still allow effective signal detection
at the CPU, the following three schemes are considered.

A. MMSE based scheme

One possible scheme as the local processing at the AP is
MMSE, which reduces interference from other UEs to extract
specific selected UEs in each AP by utilizing degrees of
the freedom of the antennas at AP. The MMSE weight is
calculated as Ul = Ĥ

(D)
l R†l , where Ĥ

(D)
l is the N × Pl

matrix of the estimated channel whose columns correspond
to the selected UEs and Rl is a covariance matrix of the
received signal vector rl(i). It assumes that each AP select
P UEs for the extraction uniformly and this corresponds to
P = P1 = · · ·PL for simplicity. P is a design parameter
satisfying N > P to reduce fronthaul loads; the spectral
efficiency also depends on it. Concretely, AP l selects the P
target UEs that have the largest βl,k.

Since interference from K − P UEs remains significantly,
in the typical case of N < K, but the post processing at the
CPU can alleviate it by utilizing PMMSE. Hence in this hybrid
processing the interference can be cooperatively removed by
AP and CPU processing.

B. EVD based schemes (LVS-EVD, GVS-EVD)

The other schemes used for local processing at the AP
are EVD based schemes, utilizing the eigenvectors of Rl

corresponding to the larger eigenvalues as the weight vectors
to extract the principal components from the received signals

and forward them to the CPU. Concretely, Rl can be written
as Rl = ElΛlE

H
l by EVD, where El = [el,1, · · · el,N ], and

Λl = diag[λl,1, · · ·λl,N ], respectively. λl,i denotes the i-th
largest eigenvalue of Rl and el,i is its corresponding eigen-
vector, i.e. λl,1 ≥ · · · ≥ λl,N . Then the weight vector at AP l
can be written by selecting Pl vectors as Ul = [e1,l, · · · el,Pl

].
In order to configure the number of output ports for each AP

Pl, two schemes are considered. One is LVS, which utilizes a
uniform number of output ports, i.e. P = P1 = · · ·PL, and P
is a design parameter. In this case, each AP can select vectors
by itself without sharing any information with other APs or the
CPU. The other is GVS which configures Pl non-uniformly
among APs and those values are adaptively determined at the
CPU. To select the effective eigenvectors throughout all the
APs, PL is determined by the following procedure. At first,
all the APs forward the eigenvalues λl,i to the CPU. Next,
the CPU selects the larger eigenvalues for a predetermined
amount X from all the eigenvalues, i.e. λl,1, · · ·λl,N for all
l, without separating APs. The CPU feedback the information
how many eigenvalues are selected from each AP, and that
corresponds to Pl. As a result the Pl satisfies X =

∑L
l=1 Pl.

Depending on the selected results, some AP may use all ports,
i.e., Pl = N , or some APs may have no ports, i.e., Pl = 0,
at an instance, but if setting X satisfying X < LN the total
fronthaul load of the system can be reduced effectively. It
is also noteworthy that X is a predetermined parameter that
can be set independently from L and N , and that it could be
operated without increasing the fronthaul load linearly to the
number of APs of the whole system.

Finally, we note that the constraint on the number of ports
per AP, as in LVS-EVD, is well suited if independent fibers
haul back the signal from the APs, while a constraint on
the total number of ports is more meaningful either with
a fiber fronthaul with daisy-chain configuration, or wireless
fronthaul where the total spectral resources for the fronthaul
are constrained.

IV. PERFORMANCE EVALUATION

In order to verify the effectiveness of the proposed ar-
chitecture and compare the proposed algorithms including
the impact of specific parameters, computer simulations have
been conducted. The simulations assume a 1km x 1km target
area, where all APs and UEs are randomly distributed. Basic
parameters are listed in Table I. The number of APs L and
number of antennas at AP N , is set to 64 and 4, respectively.
The large-scale fading generated in the simulation is given as
follows based on [8]:

βl,k = g0 − 10γ log10

(
dl,k
d0

)
+
σ2
w√
2

(
wAP

l + wUE
k

)
, (8)

where dl,k is the distance between AP l and UE k. wAP
l

and wUE
k are normalized shadow fading of AP l and UE

k, respectively, and σ2
w is the variance. Although shadowing

is related to the link, and not separately of the AP and
UE, splitting the total link shadowing into two contributions
following [5], [12] is executed to (approximately) consider



TABLE I
BASIC SIMULATION PARAMETERS

Number of APs (L) 64
Number of antennas of AP (N ) 4
Number of spatial multiplexing UEs (K) 16, 64
Size of the cluster for each UE (Z) 8, 32
Carrier frequency 3.5 GHz
Bandwidth 100 MHz
Transmission power (P̄ ) 23 dBm
Noise power −87 dBm
Fading Rician
Rician K-factor in dB 13− 0.03 · Distance
Median channel gain at d0 (g0) −43.3 dB
Path loss exponent (γ) 2
Azimuth angular standard deviation (σφ) 20°
Channel estimation LMMSE

the shadowing correlation between different UEs and APs,
respectively. The phase of the line-of-sight component can
be determined by geometrical considerations. For the chan-
nel estimation, orthogonal pilot symbols are assumed to be
allocated to UEs without any contamination and 2 symbols
are allocated for each UE for LMMSE channel estimation.
The spectral efficiency is obtained by calculating (7) for each
channel realizations with random drops of APs and UEs.
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Fig. 2. Comparison of proposed hybrid processing schemes and PMMSE
when K=16, Z=32

Fig. 2 shows the CDF of the spectral efficiency of each
multiplexed UE when utilizing the hybrid processing schemes
with MMSE, LVS-EVD, and GVS-EVD, respectively, when
setting the number of multiplexed UEs as K=16, the size of
the cluster for each UE as Z=32, and the number of antennas
at AP N=4. As a benchmark-1, the spectral efficiency of
PMMSE only at the CPU, using full fronthaul loads when

setting N=4 is shown in the same figure. The fronthaul
load reduction rate by the hybrid processing scheme to the
benchmark-1 is set to 0.5 and 0.75 for the results shown in (a)
and (b), respectively. The rate 0.5 corresponds to configuration
P=2 for MMSE and LVS-EVD, and X=128 for GVS-EVD,
and the rate 0.75 corresponds to configure P=1 and X=64,
respectively. In addition, PMMSE only at CPU with setting
the same number of antennas N to the output ports of the
hybrid processing (N = P ) are also shown as the benchmark-
2. For both the reduction rate, the remarkable degradation from
the benchmark-1 due to the fronthaul load reduction can be
observed for MMSE and LVS-EVD, whereas the improvement
from the benchmark-2 can be observed. It can be said that,
EVD based schemes are more robust than MMSE, and GVS-
EVD can obtain close performance to benchmark-1 even the
reduction rate is higher.
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Fig. 3. Comparison of the proposed hybrid processing schemes and PMMSE
when K=16, Z=8

Fig. 3 shows the results when reducing the cluster size
to Z=8. Comparing to Z=32, the spectral efficiency itself
degrades as a whole because the capability to suppress the
interference decreases, but it can reduce the computational
complexity more than Z=32. When the rate is 0.5, as shown
in (a), GVS-EVD can obtain the closest performance to the
benchmark-1. When the rate is 0.75, severe degradation from
benchmark-1 is observed for LVS-EVD and MMSE-IRC,
whereas the improvement from benchmark-2 can be observed
a little. Only the GVS-EVD can still keep the degradation
smaller. Hence it can be said that GVS-EVD is robust to
setting the cluster size smaller. This is also important feature
especially for large scale networks to operate with realistic
computational complexity.

Fig. 4 shows the relationships of the degradation of the
median spectral efficiency from the benchmark-1 for GVS-
EVD with the parameter X for Z=8 and 32, respectively.
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Setting Z larger, the degradation remains smaller even if X
is smaller, as the fronthaul load reduction rate, 1 − X/LN ,
increases. When Z=32, the degradation is kept within 10% up
to the reduction rate 0.875, corresponding X=32, and the rate
0.6875, corresponding to X=80, when Z=8.
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Fig. 5. Comparison of the proposed hybrid processing schemes and PMMSE
when K=64, Z=32

Fig. 5 shows the results when setting K=64 and Z=32.
Compared to the case when K=16, shown in Fig.2, the
spectral efficiency of each UE is degraded as a whole and
degradation of the hybrid processing from the benchmark-1 is
not negligible even with the GVS-EVD. However, it can be
said that the closer performance can be obtained compared to
the other schemes when the reduction rate is 0.5, and this is
also robust to increase of the number of UEs.

Throughout these evaluations, the effectiveness of the hybrid
processing architecture to reduce the fronthaul load could be
verified. However, when employing MMSE and LVS-EVD,
which reduce the fronthaul load uniformly in all APs, the
improvement from the benchmark-2 is limited and remarkable
degradation from the benchmark-1 is observed, especially

for the severe situations such as small cluster size or large
number of UEs. In contrast, GVS-EVD was found to be
able to maintain reasonable performance to some extent even
under the severe situations. This superiority could be explained
because it can flexibly control the data amount from each AP
to the CPU under each situation according to the importance
of the AP that depends on distribution of APs and UEs.

V. CONCLUSION

This paper has proposed a hybrid signal processing ar-
chitecture for scalable uplink cell-free massive MIMO to
reduce fronthaul loads for a scalable centralized processing
architecture. In the architecture, local signal processing, which
compresses the fronthaul loads, can be cooperatively operated
with PMMSE at the CPU while keeping the scalability of the
computational complexity to detect each UE. For this architec-
ture we have considered MMSE, namely LVS-EVD and GVS-
EVD, as the local processing. Computer simulation results
show the architecture can effectively reduce the fronthaul loads
while retaining good spectral efficiency. It also shows that
GVS-EVD can obtain the best performance among the three
schemes and is robust to increase the fronthaul reduction rate,
number of multiplexed UEs, and smaller cluster size operation.
Further evaluations, such as the effect of the quantization noise
for low resolution ADCs, that of the channel estimation error
caused by the pilot contamination, and number of antennas,
will be a future work.
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Cell-Free Massive MIMO,” in Proc. IEEE Globecom Workshops (GC
Wkshps 2018), Dec. 2018.
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