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USCViterbi From 5G to 6G

School of Engineering

* New applications drive requirements for new physical-layer approaches
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Takeaway message: 6G will use THz band to achieve unprecedented data rates
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USCWiterbi  Applications and environments —in device

DWG based Sub-THz Interconnect

* Inter-chip and inter-
board communications

Bumpless Bumpless

Flip-Channel DWG Channel Flip-Channel

Package 0 { Package
_ s -

CPU/RAM

[Ye et al. 2017]

[Park et al. 2012]

[Kim and Zajic 2016]

Takeaway message: THz will enable wireless between chips and boards
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UsCliterbi - Applications and environments - indoors
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* Information kiosk

Kiosk downloading Equivalent model

Tx terminal Front cover window

6 Rx handset
[He et al 2017] h )
\ THz Access Point
VR {

Directional \ / THz link

* Virtual Reality headset Pn
Viltual Augmented ‘
1 Reallt\ Reallh
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call

[Han et al 2019]

[dw.com, https://p.dw.com/p/3az3F ]

Indoor communications
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[Han et al 2019]

THz will enable ultra-fast connections for office, VR, data centers
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Device-to-device comm.

A. F. Molisch, THz Channels and Systems — Globecom 21
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Applications and environments - outdoors

Fixed wireless access
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THz will enable ultra-fast hotspots and device-to-device communications
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UsCViterbi THz communication promises and challenges
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* Promises
* Extremely high data rates
* High user densities
enabling applications not feasible with other technologies

* Challenges
* Availability of spectrum
* Higher attenuation and other difficult propagation channel conditions
* Low-cost semiconductor technology and transceiver design

THz challenges include (i) spectrum, (ii) channel models, and (iii) adaptive arrays
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USCV1terb1 Contents
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* THz spectrum

* THz channel measurements and models
* Fundamental propagation conditions
* Measurement technology
* Recent campaigns and results
e Ray tracing and modeling

* Semiconductor technology, beamforming, and multiplexing
* THz arrays
* Analog, digital, and hybrid beamforming
* Orbital angular momenta
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UsSCViterbi ~ THz spectrum — regulatory perspective (1)
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* Frequencies above 100 GHz seem unused

* However: most is allocated to [Marcus 2019]
* Radio astronomy
* Passive sensing

 Satellite communications (satellite-to-earth and inter-satellite)
* No ITU allocations for >275 GHz

* World Radio Conference
 Official body of the United Nations for worldwide frequency regulations
* Very slow reaction times

Internationally, 100-300 GHz spectrum occupied by satellites and radio astronomy
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UsCViterbi — THz spectrum — regulatory perspective (2)

School of Engine

* National regulators have reacted faster

« FCC (USA)

* Notice of proposed rule making (FCC 19-19 ): 21.2 GHz of bandwidth available
for unlicensed devices

* 116-123 GHz 174.8-182 GHz 185-190 GHz 244-246 GHz
* Unlicensed operation

* OFCOM (UK)
e 116-122 GHz, 174.8-182 GHz and 185-190 GHz

e CEPT (Europe)
e 122.0-122.25 GHz and 244-246 GHz

* MIC (Japan)
* 116-134 GHz

National frequency regulators are freeing up spectrum
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USCV1terb1 Contents

School of Engine

* THz spectrum

* THz channel measurements and models
 Fundamental propagation conditions
* Measurement technology
* Recent campaigns and results
e Ray tracing and modeling

* Semiconductor technology, beamforming, and multiplexing
* THz arrays
* Analog, digital, and hybrid beamforming
* Orbital angular momenta
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USCViterbi Interaction of systems and channels

* First axiom of wireless system design: In order to design a good
wireless system, you have to take into account the channel in which it
will operate

* Fundamental performance limits determined by channel (e.g.,
Shannon capacity)

* Channel determines which low-complexity solutions work well (e.g.,
sparsity-based methods)

* Need new channel measurements and models if at least one of the
following applies:

* New frequency band
* New environment

Design of THz systems needs extensive measurement campaigns and new channel models
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USC Viterbi Pathloss — closing the link
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* Free-space pathloss

1 A fd\? 2
PE{d. )] = ( i ) Grx = Anf Arx

GrxGrx Co C(Q)

* THz has high pathloss for constant-gain antennas
* THz has low pathloss for constant-area antennas

* Are we hitting the limits on array sizes?
* For constant antenna area, number of antenna elements needs to increase
* For increased bandwidth, noise power increases
e -> Arrays at THz need many more elements

Adaptive arrays can compensate higher isotropic pathloss, but number of elements very large at THz
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USCViterbi Atmospheric attenuation

School of Engineering

* Atmospheric attenuation
* For longer-range applications, i | }
only certain windows feasible
- 7\ & X N7
* Strong attenuation can be useful : » el
for chip-to-chip communications ¢ , It
2 1' = | 1'1
i [/ I !
: I J\
T A i ‘ :l\‘, ?EDFL!_//\./ N
10’ // ' ‘\—’/,/
* Foliage attenuation
 Very strong at mm-wave ”

frequencies; anticipated to be

even higher at THz [ITU-R P.676-12]

Some THz bands only suited for short-distance operation
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USCViterbi Diffraction and body blockage
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 Diffraction efficiency
decreases with frequency

* Uniform Theory of Diffraction
gives good approximation

* Body shadowing

* Almost no diffraction around
human body

* Penetration through body is
very low

e “Super-antenna” concept can
be used to emulate impact of
human [with Harryson et al.
2010;

Ld(dB)

Metal Wedge, 300 GHz

ol |—HH-UTD
—VV -UTD
o HH - Measured
- Measured

10
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30

40

45 230 =15 0 15 30

(Kleine et al. 2012]

Sharp shadows and severe body shadowing
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USCViterbi Other propagation eftects
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* Penetration loss
e Stronger attenuation than at mmWave

* Diffuse scattering
* Surface roughness is on order of
wavelength

e Beckman model or other more advanced
models desirable

Detected Signal (dB)

* Doppler shifts

* Increase linearly with frequency

-10 _
-20 _
il
.40 _

-50 4

30 (@ csiiing

[ clecr glass
‘-mm_od

25 ([T drywall

8

Antenuaton (dB/cm)
e o

(&
T

o

60 -

28 GHz 38 GHz 120GHz 144 GHz

Frequency band

i3

901)

Penetation loss through walls very high; diffuse scattering complicated
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USC Viterbi Overall channel characteristics
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ggcr)nlﬁﬂete characterization by double-directional impulse response [with Steinbauer et al.

* For all combinations of delay, TX direction, and RX direction, what is the (complex) signal amplitude

Receive power:
* Determines coverage, capacity
* Distribution and speed of variation impacts temporal diversity and required speed of feedback and
adaptation
Delay dispersion:
* Determines available frequency diversity,
* Necessary length of equalizer, length of cyclic prefix

Angular dispersion:
* Determines MIMO capacity, suppression of interference
e Distinguish impact on analog and digital beamforming

Distinguish omni- vs max dir power and delay spread

Pathloss, delay spread, and angular spread give key summary of channel impact

A. F. Molisch, THz Channels and Systems — Globecom 21 16




USCViterbi Channel measurements
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* Measuring impulse response

e Correlator, sliding correlator
* Fast, no cables needed

* Vector Network Analyzer (VNA)
* Widely used
* Slow: complete measurement may take several seconds
* Phase coherence over multiple measurements can be ensure

* Directionally resolved measurements

* Rotating horns: widely used, slow
e Mechanical rotation time dominates overall measurement time

* Phased arrays would dramatically reduce measurement time (compare [with
Bas et al. 2017] for mmWave), but are not widely available yet

THz channel measurements are expensive and labor-intensive

A. F. Molisch, THz Channels and Systems — Globecom 21 17



USCViterbi USC measurement setup
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* Rotating horns with VNA and RoF extensions

Parameter Symbol | Value
a > USB over Frequency poirts per sweep | N 1001
USB usB i E;:gm Tx/Rx heighy hrz/n= 1.6 m
o Start frequency fatars 145 GHz
\Vector Network Analyzer Stop frequency fatop 146 GHz
i L g 1 Bandwidth BW 1 GHz
e 4 THz Channel ’ i e IF bandwidsh IFyw | 10 KHz
20 Lo} THz IF fruzir | 2719 MHz
Antenna 3 dB beamwidth HPBW | 13°
@ me:mfgzg Tx rotanion range Ors [0°360°]
Tx rosarion resolwion Adrs 10°
Positioner ectro-opti Positioner
> EIMwaDer Rx Az rosarion range PRz [0 3607]
Laser Source Fibr  PhotoDiode  Ampl Rx Az rotarion resolwion Adnsz 10°

USC long-distance frequency domain setup
» Used for the first long-distance, double-directional measurements in the THz
regime [with Abbasi et al. 2019/20]

RF over fiber overcomes range limitation of THz VNA measurements
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USCViterbi  Device-to-device (D2D) measurement campaign

e Urban Environment

e Quad and Street
e LoS and NLoS

-

A. F. Molisch, THz Channels and Systems — Globecom 21

[with Abbasi et al. 2021a]
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 Sample results PDP
e Omni and max dir

* Rich multipath for
omni case

* Sample results APS

[with Abbasi et al. 2021a]
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Rich multipath even in LOS, though reduced by directional antennas
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USCViterbi D2D: pathloss
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120 * ' ' 140 Omni

Omni

/N Max-Dir Max-Dir
= = «Omni Model 130 = = :Omni Model :
—@&— Max-Dir Model =—@®— Max-Dir Model | A AN

e Friis

Friis

FAN
LOS g *

NLOS &
pathloss &

pathloss

100
90 -
90 |

80 ' ' ' 80 ‘

2 5 10 20 50 100 2 5 10 20 50 100

d [m] [with Abbasi et al. 2021a] d [m]

e LOS: Pathloss coefficient ~1.8 e NLOS

(smaller than Friis) Excess pathloss: 10-30 dB
 Standard deviation: 1.5 dB Standard deviation

5 dB in NLOS omni
7 dB in NLOS Max-Dir

THz with directional antennas can sustain Gbit/s over 100 m even in NLOS

A. F. Molisch, THz Channels and Systems — Globecom 21
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USCViterbi D2D rms delay spread
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1 i 1 Omni
i :)n:‘lxr-l:)i r % sz-fi’ir
CDF of 0.8 "ron CDF of 0.8|——"..,
logarithm i logarithm
of rms —~ 0.6 of rms ~ 0.6
delay Ei.b’ delay =
spread 0.4+ spread 0.4+

LOS case 0.2 NOS case 0.2+

-90 -85 -80 .75 -70 -90
o [dBs]

* Delay spread varies with position, can be modeled as random variable
* Lognormal distribution fits well
e Delay spread is large in units of inverse bandwidth

Even with directional antennas, rms delay spread is many ns
A. F. Molisch, THz Channels and Systems — Globecom 21 22
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D2D angular spread

* Distribution of angular spreads for LoS and NLoS are lognormal

* Mean angular spreads are 17 and 35 degrees

CDF of
logarithm
of rms
angular
spread
(Fleury
definition)
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[with Abbasi et al. 2021a]

Significant angular dispersion, allowing angle diversity but potentially increasing multi-user interference

A. F. Molisch, THz Channels and Systems — Globecom 21
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USC Viterbi Microcell channel measurement campaign
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* Urban A ol > " W o I 3 *»ffcfs

* Street canyons SRS L R ohly < qu

and parking 1o & I'Laboratory B s

e LoS and NLoS R/ ot l ki3
* BS height 11.5m | | L et ©

[with Abbasi et al. 2021b]

I ® 0 USciCARIabaa
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UsCViterbi — Microcell channel — Sample results
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LOS NLOS
* LOS: ! ' ' ' T omm 140 , .
. -120 \ Max-Dir : 73:::)"
. -145 1 ]
* Direct component | | |
dominant for maxDir g g
. . o -140 a_-155
* Rich multipath for 5 ’ T |
omni case 150 | >
_ 165
i WMWMM«MMWW i

* NLOS: -

* Strongest (m]

) 120 420
components with 150 1%
large delay g 2 - g ™ B
5 50 = -
* Beam directions all g 140 0 5 & 0
different from LOS wl ll = o
. . - -100
directions "
160 150 160 -150
40 20 ¢pl°1 20 40 60 60 40 20 ¢.p[1 20 40 60

Rich multipath also in microcell scenario; main direction for NLOS often direction of street canyon
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USCViterbi Microcell pathloss
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LOS NLOS
115 O omni [ B O L L 140 O omni ' ‘ ' ¥ S
*  Max-Dir ¥  Max-Dir * *
= == == Omni Model = = = Omni Model .*.
Max-Dir Model Max-Dir Model
—@—Frils * 130 | —®— Friis
110 o7
LOS i NLOS
) o 120
pathloss  =.,45! pathloss 5
- -
o 2 110
- e o
100F .-~ 1
- 100 -
@)
95 H L n H 1 1 1 n i 1 H 1 P | T T S T N T SN T SN SN S S T N S 90 L i : I : : : I
20 30 40 50 60 70 80 90 10 20 50 100
d [m] , , d Iml
[with Abbasi et al. 2021b]
* NLOS

Excess pathloss: 10-30 dB
Standard deviation
8 dB in NLOS omni

e LOS: Pathloss coefficient ~1.9
(smaller than Friis)

* Standard deviation: 1. dB
Even NLOS links can sustain Gbit/s over 100 m, LOS can sustain hundreds of Gbit
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USCViterbi Microcell rms delay spread
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1 Omni
Max-Dir

- - =
Omni

CDF of 0.8 CDF of 0.8 | — "
logarithm logarithm

of rms _ o6} of rms ~ o6}

delay & delay &

spread  ,° | spread w°® o ,|

LOS case : NOS case
0.2} A
0 . ‘ _UTMax-Dlr 0 2 . | .
-90 -80 -75 -70 -95 -90 -85 -80 -75 -70 -65
o_[dBs] [with Abbasi et al. 2021b] o_[dBs]

* Lognormal fits well

* Values somewhat smaller than in D2D case

Rms delay spread smaller than for D2D, but still several nanoseconds even with directional antennas
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USCViterbi Microcell angular spread
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* Angular spreads at BS smaller than at the UE

LOS NLOS
A\ R A\
1 1 _A_UAS-TX I I I, .-~
—/— “as-Rx ’
L] -UAS-TX Model ’
0.8+ 0.8 | == 0,5y Model ‘
E 0-6 B E 0_6 -
o o ’
- = 7
S S
- —_— L 4
= 0.4 = 04
7
0.2+ —B— ey 0.2r ’
—/— %as-Rx S
-— =y Model
e T o o Model -
0 A \Va 1 | 0 ———_ S V 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 -1 -0.8 -0.6 -0.4 -0.2 0

log, (o) log, (o)

Angular spread at the BS smaller than at the UE
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USCViterbi Example impact of reflecting surface
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* Shape propagation environment

* Passive, non-adaptive reflectors

Scenario without and with foil [with Abbasi et al. 2021c]

Passive non-adaptive reflectors easier to implement especially at high frequencies

A. F. Molisch, THz Channels and Systems — Globecom 21 29



UsCViterbi Example impact of reﬂectmg surface (Il)
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e Addition of foil
introduces more
multipath

* More frequency
selectivity

e Greater beam

diversity Aneular

Spectrum
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N o= > -140 i
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o - ]
Delay NE_ i ‘ "% 20 30 a0
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=. Tl
I
R
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Al l“ H l
. it
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£ 0 i — 135
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Passive reflectors enhance some multipath components, increase angular diversity
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USC Viterbi Other measurements - outdoor
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e Survey [with Han et al. 2021]

e Qutdoor measurements
* NYU, [Xing and Rappaport 2021ab, Yu and Rappaport 2021]: 140 GHz, BS height 4m
* HHI, [Undi et al. 2021]: 300 GHz, BS height 2.1m

* Satellite to ground [Xing and Rappaport 2021]

Surrogate Satellite

-50 boresight Angles: §0°70° 60° 50°  40° 30° 20° i 157
! f i I i ! —0° Elevation
i i Th ) —8° Elevation |
ssf e ] Coretica) g 16° Elevation
............... e, 2 y H
ol e " Shace recejyey {24 Elevation | |ros [Xing and Rappaport 2021]
N el T POowep|[—32° Elevation g

| ' . . dB BVers. . LOS with foliage fohagc

65 [Carrier freq. 142 GHz S CTARE Bolinge 1! blocks
BS Height: 38.2 m 9\' o 8e logs the link

IME Height: 1.5m | A e e it e P
Horizontal plane: 0° / 24° \\\ o

Ptx =-2.0 dBm ‘ /

Antennas: 27 dBi gain, /

~
(%3]

15

Received Power (dBm)

8° HPBW | // 2 |4B
BRW: 1 GHz RF
-85 null-to-null -
Aver. Factor: 20 PDPs /
-90 Noise Floor: -94 dBm |
-95 L —_—L S E— " P — —
30 40 60 100 150 179 200

3D TR Separation Distance (m)

Outdoor with lamppost-height BS, emulated satellite links, have been recently measured
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USC Viterbi Other measurements - indoor

School of Engineering
Pathloss Omni-directional delay spread Directional delay spread
300 300 /i [G;IOZ]
2 * < GIT > TUBS ¢
4 A USC ¥V BITU 60 60
v | Y NYUZR SITU 30 O OF 30 250
3 i ODU O GU — 0 I B o |
@ O UGA % TUL Kk R 2 220y
o AlX n 3 : ’ A ‘ 7 S ’
A . VOO 0o st R o] o) 200
218 gﬁ* 4 — o I .l ¥ !
) OCI LoSECI. NLoS > P
4 |OFI, LoS®FI, NLoS ‘
0 q (BF 0.2 ) 150
2 0.2 < 5
< “
100 200 300 1000 "1 5 10 50 100 300 1 _— P —
.v [GH: . ; 100
Freaency 1z Distance [m] Distance [m)] =
Shadowing Angular spread
Frequency [GHz]
I)isluncc!:{n] 350
ol * [ QGIT v BITU O
| * A USC 12 SITU |y 300
5| YCNYU O UGA |VW 20 i
g < | O GU % TUL 60 O O% n :_ > TUBS
& _ - 55 550 |V BITU
15 2307 O X Z%; O o ¢ NYU
» i % 0l % 7 XX SITU
. < 10 < > > 200 O AU
= : - QO HHI
0 LoS m NLoS
I— s | 0; O 1B 150 |O vca
0.1} % TUL
100 150 200 300 2 5 10 20 50
Frequency [GHZz] Distance [m]

Delay and angular spreads quite high even indoors
A. F. Molisch, THz Channels and Systems — Globecom 21 32



USCViterbi Ray tracing/ray launching
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 Measurements are gold standard, but
too much effort
e Results often in selection bias

* Principle
e Quasi-optical approximation of Maxwell’s
equations
* Widely used for cellular network planning

* Very good at predicting power
(coverage/interference)
e Accuracy depends on data base, need

]I?O'nt C|09d (Lidar scan) at high [with Koivumaki et al. 2021
requencies

Ray tracing/launching important for large-scale channel data

33
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USC Viterbi EFxam P les

Street canyon @
- Aalto University

* Points in the point cloud
produce

e Specular reflections
 Diffuse scattering
e Attenuation loss due to shadowing

* Material parameters (e.g. permittivity)
optimized to fit measured channel impulse

responses
Specular + Diffuse = OveraII channel
-60 -60 ‘ ‘ -60
—Measured —Measured —Measured
-70+ —Predicted (spec.)/ -70+ —Predicted (diff.)f; -70+ —Predicted (spec. + diff.)f|
g g ® g
g g <0 g
."3 - "3 _1 00 - "3 -
2 3 3 [Haneda et al. 2021;
E. E-110 E.
< < <
- -120 -
: : -130 ‘ - : :
0 50 100 150 0 50 100 150 0 50 100 150
Delay [ns] Delay [ns] Delay [ns]

A. F. Molisch, THz channels R@int-eloaehsiimulations based on Lidar scans give high accuracy 34



USCViterbi Line of sight probability
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LOS probability with point clouds and stochastic modeling

Intersection of

1gs
: lane and line
\ A P
0.8/ 3 ; ‘:...50;;.
& TP T Y Center of intersec-
HCY "'-"---.-..,,:f P ] 1
E 06 = 2 ) tion ellipse m
3 5 1
w 0.4
- 0
0.2 0
~7 L 1
0 - g ; e ) 05
0 100 200 300 400 500 o, i ]
Distance [m)] -0.5
o 4
X [11]] y [III]

[with Koivumaki et al. 2021

LOS can be blocked even by small objects; blockage of Fresnel zone must be considered

A. F. Molisch, THz Channels and Systems — Globecom 21
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USC Viterbi Modeling pathloss in microcells

School of Engineering

e Shadowing variance increases with TX-RX distance — why?

Daejeon 28GHz Ray-trag™—_ NLoS) 20 . Dasjeon IZBGHz Raly-tracing .
»  NLoS2 - NLoS1
100 »  NLoS3 ool | NLosz
®  NLoS4 - NLoS3
80 NLoSS +  NLoS4
NLoS6 180 NLoS5
NLoS? = NLoS6 2
o0 NLoS8 g, NLoS7 =
= BS w 160 NLoS8 ——
E a0 8 - i
- £ 140 e .
20 o
. 120 +
0 ]
100
-20
! . L —i , , , , 80 : : : .
180 -160 -140 -120 -100 80 60 40 -20 . N 100 150 200 250
X [m] Distance [m]

Shadowing variance seems to increase with distance

A. F. Molisch, THz Channels and Systems — Globecom 21
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Modeling pathloss street-by-street

* Street-by-street pathloss
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[Molisch et al. 2016; with Karttunen et al. 2017]

Different streets have different pathloss coefficients
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* THz spectrum

* THz channel measurements and models
 Fundamental propagation conditions
* Measurement technology
* Recent campaigns and results
* Ray tracing and modeling

* Semiconductor technology, beamforming, and multiplexing
* THz arrays
* Analog, digital, and hybrid beamforming
* Orbital angular momenta
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* Flexibility in beamforming per
subcarrier

* Higher energy consumption

* For large bandwidth, use low-
resolution ADCs to limit energy

* General guideline: quantization noise
should be smaller than thermal noise
[Roth et al. 2018]

* Advanced signal processing for low-
resolution ADC [Zhang et al. 2021]

Fully digital beamforming must use low-resolution ADCs
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[Abu-Surra et al. 2021]

THz system with fully digital beamforming demonstrated
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* High-EIRP CMOS is arriving

140 GHz IF Beamforming \
Phased-Array Transmitter

@& 4x2 Elements LO (21-24 GHz)
Wafer-Scale Chipset

[Li et al. 2021]
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CMOS phased arrays at 140 GHz with high EIRP are here, but not yet commercial
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 Combine analog with digital beamforming to reduce number of RF chains

) @ )
~ o
Ns| Fgp ;NBaF Fre : Vg
Dig (@

\ e ) (\nalog precoder

J

* Invented in early 2000s at MERL: [Molisch and Zhang 2004], [with Zhang et al 2005]
(using instantaneous CSl), [with Sudarshan et al. 2006] (using average CSI).

Hybrid beamforming allows drastic reduction of RF chains without significant performance loss
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* Use of second-order (statistical) - Uove 1m0s
. . 11— UCVS_no STDT_~=0.9
channel state information, CSI: - JSOM_G=1
~N'10 = ST
* Use for analog beamformer, together % = DAL G T, S
with instantaneous CSI for digital =
beamformer E
* Large reduction of channel estimation i
effort 5
2
* Grouping/scheduling of UEs % 20 25 a0 8 40

critically impacts performance
[with Li et al. 2018]

Analog beamformer in hybrid beamforming system best based on second-order channel state information;
User grouping/scheduling is critical
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Orbital Angular Momentum

(r, ¢) = exp(ile)
‘No OAM’ /= ....-3,-2,-1 +1,+2, +3 ....
# of states pOSSIb|e =

infinite , .... ( theoretically)

: - o
o Intensity null at the center
o Phase spirals ‘I’ times over
distance of one wavelength

[Yao, et al. 2011 Adv. in Opt. & Phot.

OAM well suited for multiple data streams on point-to-point LOS links
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[with Minoofar, et al., 2021].
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(c) (Set1: LGz and LGy

Transmitted modes
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)

o

>

0

s * Sources of intermodal
interference

* Imperfect phase plates/detectors
Radial offset

Received modes
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*‘* ** [with Yan et al., 2016].

EVM_ 2802% _ 3409% __ [with Minoofar, et al., 2021].

Multipath leads to inter-modal interference, reducing OAM capacity
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* THz expected to be an important part of 6G
* Need new measurements and channel models for THz

* Both cellular and D2D communications are possible outdoors
 distances of 100+ m possible,
* Max distance depends on LOS/NLOS, and particularities of environment

* Passive reflectors can enhance coverage and beam diversity

* Hybrid beamforming allows energy-efficient combination of large arrays
with smaller number of RF-chains and ADCs

* OAM at THz well suited for backhaul and LOS links
e Still a lot of exciting research to be done !
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