
TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. -, NO. -, 1

MIMO Systems with Restricted Pre/Post-coding –
Capacity Analysis based on Coupled
Doubly-correlated Wishart Matrices
Vishnu V. Ratnam, Student Member, IEEE, Andreas F. Molisch, Fellow, IEEE,

and Haralabos C. Papadopoulos, Member, IEEE

Abstract—Many practical communication systems have some
form of restricted precoding or postcoding such as Antenna
Selection, Selection Combining, Beam Selection and Limited
Feedback precoding, to name a few. The capacity analysis of
such systems is, in general, difficult and previous works in
the literature provide results only for certain simplified cases.
The current paper derives a novel approach to analyze the
capacity for such systems under a very generic setting. The
results are based on asymptotic closed-form expressions for
second-order statistics and joint distributions of eigenvalues for
a set of coupled, doubly-correlated Wishart matrices. A tight
approximation to the joint distribution of the eigenvalues in the
non-asymptotic regime is also proposed. These results are then
used to show that the system capacity can be approximated as
the largest element of a correlated Gaussian vector. Showing that
this is equivalent to the problem of finding the distribution of
sum of lognormals, we propose a novel approach to characterize
its distribution. As an application, the capacity for an antenna
selection system and a limited feedback precoding system are
compared to their respective approximations. The paper also
demonstrates how the results can be used to design the precoding
codebook in limited feedback systems.

Index Terms—Restricted precoding, Antenna Selection, Lim-
ited Feedback precoding, Joint eigenvalue distribution, Wishart
matrices, Capacity distribution.

I. INTRODUCTION

With the rising amount of downlink data traffic but a limited
available spectrum, there is an impending spectrum crunch
and a need for higher spectral efficiency. Multiple-input-
multiple-output (MIMO) transmission technologies promise
large gains in spectral efficiency by offering spatial degrees
of freedom for data transmission. In fact, with the progress
in digital and radio-frequency (RF) hardware technology, the
development of low complexity precoding algorithms and also
the possibility of using the mm-wave frequency band for
cellular transmission, cellular networks are moving towards
the massive MIMO regime i.e., base stations with dozens
or hundreds of antenna elements. First proposed in [1], data
transmission in massive MIMO systems offers several ad-
vantages such as simplified precoding, higher beamforming
gains etc. However, having a massive antenna array brings
with it several problems. Firstly, the cost of channel state
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information (CSI) feedback from user terminal to the base-
station, in the downlink scenario, increases significantly for
frequency division duplexing systems1. This has led to the
proposition of limited feedback precoding (LFP) [2], wherein
the transmitter maintains a codebook of precoding vectors and
the receiver feeds back only the codebood index based on the
CSI. Secondly, since RF hardware such as analogue-to-digital
converters, digital-to-analogue converters, mixers, RF filters
etc. are power hungry and expensive, with massive antenna
arrays it may be impractical to equip each antenna with a
dedicated RF chain. This has led to the proposition of transmit
antenna selection (TAS) [3], [4], wherein a smaller number
of RF chains feed the transmit antennas via an array of RF
switches. Another such example is a beam selection system
[5]–[7]. In all of these precoding methods, the data precoding
is restricted to take-on only a restricted set of values (either
due to limited CSI or due to limitations in the RF hardware).
We shall refer to any such system with restrictions on data
precoding as a restricted pre-coded system.2 Such systems
form an important class of practically viable massive MIMO
systems.

The performance analysis for restricted precoded systems
is difficult in general and no closed form expressions (for
the most general setting) are known to date. For the case of
limited feedback precoding, lower bounds on the capacity with
beamforming in an isotropic channel were proposed in [8].
System upper bounds under similar settings were considered
in [9], [10] etc. The lower bound in [8] was extended to the
case of spatial multiplexing in [11]. For correlated channels,
heuristic designs for the codebook were suggested in [8], [12],
[13]. However, bounds on the performance and the optimal
design of the codebook for spatial multiplexing in a correlated
channel are not available in literature to the best of the authors’
knowledge. Even in the relatively simple case of random
vector quantized beamforming, performance bounds and good
codebook designs for a correlated MIMO channel were found
only recently [14]. A more complete discussion of the results
prior to 2008 are available in [2]. Similarly, for the case of

1Unlike with time division duplexing, where CSI from uplink training can
be used for downlink transmission, with frequency division duplexing, we
need to rely on downlink training and uplink CSI feedback.

2A system with similar restrictions at the receiver, for example: Receive
Antenna Selection, shall be referred to as a Restricted postcoded system
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TAS3, bounds on the distribution of the capacity for spatial
multiplexing in an isotropic channel were found in [15]. The
ergodic capacity in the high and low signal-to-noise ratio
(SNR) regimes were discussed in [16]. A loose upper bound
on the outage probability for a spatial multiplexing system
with receive antenna selection, in a correlated fading channel
was considered in [17]. However, the performance analysis of
spatial multiplexing with TAS in a correlated channel is not
available in the literature to the best of the authors’ knowledge.
A more complete review of literature on antenna selection is
available in [2], [4], [18].

Evaluation of the system performance is important in de-
signing good systems. For example, it can aid in the design of
good codebooks for a LFP system. In this paper we develop a
mathematical framework for the analysis of such systems. As
shall be shown in Sec. II, some of the important performance
measures like mean and outage capacity are a function of the
eigenvalues of a set of coupled4, doubly-correlated Wishart
matrices. Therefore characterizing the joint eigenvalue distri-
bution across these coupled Wishart matrices is an essential
step towards characterizing the performance. The asymptotic
eigenvalue distribution [19], [20], non-asymptotic diagonal
distribution [21] and joint eigenvalue distributions [22] for a
single Wishart matrix have been widely characterized both
with and with-out correlated entries. The joint eigenvalue
distribution for a pair of correlated Wishart matrices was
characterized in [23], [24]. However, the joint eigenvalue
distribution across a larger set of correlated, let alone coupled,
Wishart matrices has not been studied in literature to the best
of our knowledge.

The contributions of this paper are as follows: We derive
the asymptotic second-order statistics and joint distribution of
eigenvalues across a set of coupled, doubly-correlated Wishart
matrices. We also propose a tight approximation for the
joint distribution of eigenvalues in the non-asymptotic regime.
These results are then used to approximate the distribution
of capacity for a restricted precoded system. In the process,
we propose a new technique for finding the distribution of
the largest element of a correlated Gaussian vector. As an
application of the proposed techniques, we also design an
efficient codebook for a limited feedback system. Though we
focus here on restricted precoding, the presented analysis can
also be extended to the case of restricted postcoding.

The rest of the paper is organized as follows: In Sec. II,
the channel model is introduced and the problem of finding
the capacity of a restricted precoded system is formulated. The
joint distribution of the channel eigenvalues are derived in Sec.
III. Using these results, the approximate capacity distribution
for a restricted precoded system is derived in Sec. IV. To study
the effectiveness of the approximation, simulations under some
practical channel parameters are performed in Sec. V. As an
application of the results, we also demonstrate how it can be

3It is well known that transmit antenna selection without CSI at the
transmitter (CSIT) can be interpreted as a type of LFP [2]. However with
the presence of CSIT, this is not true.

4By coupling, we mean that the Gaussian matrices generating the set of
Wishart matrices have some common elements.

used to design a good codebook for a limited feedback system
in Sec. VI. Finally, the conclusions are presented in Sec. VII.

Notation used in this work is as follows: scalars are rep-
resented by light-case letters; vectors by bold-case letters;
matrices are represented by capitalized bold-case letters and
sets; and subspaces are represented by calligraphic letters.
Additionally, ai represents the i-th element of a vector a, ‖a‖P
represents the LP norm of a vector a, [A]i, j represents the
(i, j)-th element of a matrix A, [A]c{i } and [A]r{i } represent
the i-th column and row vectors of matrix A, respectively,
‖A‖F represents the Frobenius norm of a matrix A, A† is
the conjugate transpose of a matrix A and |A| represents
the cardinality of a set A or dimension of a space A. Also,
E{} represents the expectation operator, P is the probability
operator, Ii and Oi, j are the i × i and i × j identity and zero
matrices respectively, and R and C represent the field of real
and complex numbers.

II. GENERAL ASSUMPTIONS AND CHANNEL MODEL

We consider a point-to-point MIMO link where the trans-
mitter has an array with N � 1 antenna elements and the re-
ceiver has M ≤ N antenna elements, respectively. We assume a
narrow-band system with a frequency flat and temporally block
fading channel. The channel fading statistics are assumed to
be Rayleigh in amplitude, doubly spatially correlated (both at
transmitter and receiver end) and to follow the widely used
Kronecker correlation model [25]. The transmitter is assumed
to have restricted precoding, wherein, the transmit data vector
is precoded by a precoding matrix of dimension N ×K , where
K ≤ N . For LFP, K corresponds to the number of transmit data
streams and in the case of TAS, K corresponds to the number
of RF chains, respectively. Note that in LFP, we typically have
the number of data streams K ≤ M . However, for analytical
tractability, in this paper we assume K ≥ M and the case of
K < M is deferred to future work. Under these assumptions,
the baseband downlink received signal vector can be expressed
as:

y =
√
ρHTx + n

=
√
ρR1/2

rx GR1/2
tx Tx + n (1)

where y is the M × 1 received signal vector, ρ is the SNR,
H is the M × N small-scale fading channel matrix, Rtx is the
N × N transmit spatial-correlation matrix, Rrx is the M × M
receive spatial-correlation matrix, G is an M × N matrix with
independent and identically distributed (i.i.d.) CN(0,1) com-
ponents (circularly symmetric zero-mean complex Gaussian
entries with unit variance), n ∼ CN(OM×1, IM ) is the M × 1
normalized AWGN noise vector, T is a N × K transmit pre-
coding matrix and x is the K × 1 transmit data vector.

In a restricted precoded system, the precoding matrix T can
only attain a restricted set of values, i.e., T ∈ T . Here, we shall
refer to this set T as a codebook. For example, in LFP, T is
the set of all N×K precoding matrices in the codebook and in
the case of TAS, it is the set of all possible N ×K submatrices
of IN formed by picking K out of N (distinct) columns. Let
T = {T1, ...,T |T |}. We assume that the precoding matrices are
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semi-unitary i.e. T†i Ti = IK for all i ∈ {1, .., |T |}5. We further
assume that H is quasi-static and therefore the system capacity
is computed for each channel realization as:

C(H) = max
P,1≤i≤ |T |

log
���IM + ρHTiPT†i H

†
��� (2)

s.t Tr{P} ≤ 1

where P = E{xx†} is the transmit power allocation matrix. In
unitary LFP, since the transmitter does not have CSI, typically
equal power allocation is used i.e. P = 1

K IK .6 In the case
of transmit antenna selection with CSI however, the capacity
optimal water filling power allocation can be used. This is the
major difference between LFP and TAS with CSIT. Though
the results can also be extended to the case of water-filling
with a little effort, for the case of TAS we assume that equal
power is allocated to all the non-zero channel eigenvalues.
This scheme is capacity optimal in the high SNR regime [26].
Furthermore, since with antenna selection the best precoder is
likely to yield less skewed channel eigenvalues, the capacity
loss due to equal power allocation is small even at low SNR.
Under these assumptions, the capacity expressions7 in either
case can be expressed as:

CLFP(H) = max
1≤i≤ |T |

{
M∑
m=1

log(1 +
ρ

K
λ̃im)

}
(3)

CTAS(H) = max
1≤i≤ |T |

{
M∑
m=1

log
[
1 +

ρλ̃im
rank{HTi}

]}
≈ max

1≤i≤ |T |

{
M∑
m=1

log
[
1 +

ρλ̃im
M

]}
(4)

where λ̃im is the m-th largest eigenvalue of HTiT†i H
† and

the last step follows from the fact that M ≤ K and the best
channel is rank deficient with very low probability. Since the
effective channel for a given precoder matrix T is HT, we
shall henceforth refer to λ̃im as the m-th “channel" eigenvalue
for precoder Ti .

III. JOINT DISTRIBUTION OF CHANNEL EIGENVALUES

From (3) and (4) it is clear that the capacity distribution
depends only on the eigenvalues of HTiT†i H

†. It can be easily
verified from (1) that {HTiT†i H

† |1 ≤ i ≤ |T |} forms a set
of coupled, doubly-correlated Wishart matrices. The coupling
comes from the fact that all these matrices are generated from
the same i.i.d. random matrix G. In this section, we character-
ize the joint distribution of the eigenvalues of these coupled
Wishart matrices. We first derive the asymptotic second-order
statistics and the joint distribution of the eigenvalues in the

5This assumption is valid for TAS and also holds for the most common
case of LFP called limited feedback unitary precoding.

6Note that with availability of second-order CSI at transmitter, statistical
power allocation can also be used to improve performance slightly. Also, in the
most general non-unitary LFP setting, the codebook can be augmented with
additional feedback bits to convey power allocation information. Though such
non-unitary precoding is beyond the scope of this work, the analysis presented
here can also be extended to these scenarios with little effort.

7Due to the use of sub-optimal power allocation, strictly speaking, these
expressions correspond to “achievable data-rate". However in this work, with
a slight abuse of notation, we shall refer to them as capacity.

large antenna limit i.e., for N,K →∞ (with a fixed ratio) while
M is kept fixed (finite). Note that this is counter intuitive in the
case of LFP since there we typically have K ≤ M . However,
this scaling is required for analytical tractability and where
necessary, we shall also consider approximations for the, more
practical, finite antenna regime (including the case of K = M).

For the large antenna limit, we define the scaled param-
eters N = sNo and K = sKo, where No,Ko are constants
and s is the scaling factor. We define a family of N × N
transmit correlation matrices Rtx and a family of codebooks
T = {T1, ..,T |T |} as a function of s. For the family of
codebooks, the codebook size |T | is fixed but the precoding
matrices Ti are N×K semi-unitary matrices as a function of s.
The eigenvalues of HTiT†i H

† typically diverge as s increases.
Therefore we shall instead characterize the eigenvalues of

its normalized counterpart Qi ,
HTiT†iH

†

Tr{T†iRtxTi }
.8 We define the

eigen decomposition Qi = EiΛiE†i where Ei and Λi are the
unordered eigenvector and eigenvalue matrices, respectively.
We shall refer to these eigenvalues λim = [Λi]m,m as the
normalized channel eigenvalues. We also define the eigen
decompositions Rrx = ErxΛrx[Erx]† and Rtx = EtxΛtx[Etx]

†

where, λtx
k
= [Λtx]kk , λrx

k
= [Λtx]kk are the k-th largest

eigenvalues of Rtx, Rrx respectively.

A. First-order approximation and second-order statistics

The expression for the normalized channel eigenvalues and
their second-order statistics, in the large antenna limit, are
given by the following theorem, which extends the results in
[20] to the joint statistics case:

Theorem III.1. Consider a family of transmit correlation
matrices Rtx and a family of precoding matrices T =

{T1, ..,T |T |} as a function of s. If the eigenvalues of Rrx are

all distinct and lims→∞
‖T†iRtxTi ‖F

Tr{T†iRtxTi }
= 0 for all i ∈ {1, .., |T |},

then as s→∞:

λim ' erx
m
†Qierx

m , Ûλim (5)
µim = E{λim} ' λ

rx
m , Ûµim (6)

K i j
mn = E

{
λimλjn

}
− µimµjn

'

δmnλ
rx
mλ

rx
n




T†jRtxTi




2

F

Tr{T†i RtxTi}Tr{T†jRtxTj}
, ÛK i j

mn (7)

for all 1 ≤ m,n ≤ M, i, j ∈ {1, .., |T |} and where we use “'" to
denote a first-order approximation (i.e., an equality in which
the higher order terms that do not influence the asymptotic
statistics of λim as s→∞ are neglected), λim = [Λi]m,m and
erx
m = [Erx]c{m}.

Proof. See Appendix A. �

These normalized channel eigenvalues [λi1, .., λiM ] are un-
ordered and are picked in the permutation such that the
Hoffman-Weilandt inequality holds (see proof of Theorem
III.1). Note that the conditions required for the above theorem

8Note that if Tr{T†iRtxTi } = 0, the corresponding channel eigenvalues are
trivially zero. Here we only consider the non-trivial case of Tr{T†iRtxTi } > 0.
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are somewhat difficult to verify since they depend on the
codebook. A simpler sufficient condition, independent of the
codebook, is given by the following proposition.

Proposition III.1.1 (Simpler sufficient condition). Theorem
III.1 is satisfied if eigenvalues of Rrx are all distinct and either

lims→∞

∑K
k=1 (λ

tx
k
)
2

[
∑K
`=1 λ

tx
N+1−`]

2 = 0 or lims→∞
(λtx

1 )
2∑K

`=1 (λ
tx
N+1−`)

2 = 0

Proof. See Appendix B. �

Intuitively, the theorem states that as long as the eigenvalues
of the transmit correlation matrix are not too skewed (so that
the law of large numbers is applicable) the normalized channel
eigenvalues asymptotically converge. Therefore, the first-order
approximations to the normalized channel eigenvalues are
valid for large s, and these are used to derive the second-order
statistics. Some examples of families of transmit correlation
matrices which satisfy the skewness constraints in Proposition
III.1.1 are discussed in Appendix D.

Though the presented results are asymptotic, we are inter-
ested in how quickly the terms in (5)-(7) converge to their first-
order approximations as a function of s. It is worth mentioning
that for the special case of a single receive antenna (M = 1),
(5)-(7) are exact for all values of s. For larger values of M ,
a comparison of the convergence speeds of the first-order
approximations to results from Monte-Carlo simulations are
studied in Fig. 1 for a sample restricted precoded system. Here,
the unordered eigenvalues of Λi are being compared with the
ordered eigenvalues obtained from Monte-Carlo simulations.
Such a comparison is reasonable if the overlap between the
marginal distributions of the unordered eigenvalues is low i.e.,
if the eigenvalues of Rrx are sufficiently well separated and if
s � 1. A comparison of the convergence of the asymptotic
first-order expression (5) to Monte-Carlo simulation results is
studied in Fig. 1a. It shows that while the convergence of (5)
is very quick with K for large eigenvalues it is slower for the
smaller eigenvalues. A comparison of the approximate second-
order eigen statistics to Monte-Carlo simulations as a function
of s is presented in Fig. 1b. It shows that the second-order
statistics match even for K = 2, validating quick convergence.
Similar results have been observed for a wide variety of system
parameters. The seemingly slow convergence of Ûλim for small
eigenvalues in Fig. 1a and µim in Fig. 1b is a result of the
comparison of ordered with unordered eigenvalues.

Approximation III.1. Due to the accuracy and quick conver-
gence of the first-order approximations, we will use the ÛX’s in
place of the X’s in (5)-(7), even in the non-asymptotic regime,
i.e., for finite values of s.

B. Joint Distribution of eigenvalues

In this section we find the joint distribution of the normal-
ized channel eigenvalues. Since the actual distribution is hard
to characterize, we first derive the asymptotic joint distribution
and later consider approximations for finite values of K . The
following theorem gives us partial results on the asymptotic
joint distribution of eigenvalues:
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Fig. 1. Convergence of normalized channel eigenvalues to their first-order
approximations for a restricted precoded system, as a function of K : (a)
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(
system parameters:

N = 2K ,M = 2, [Rtx]ab = η
|a−b | , [Rrx]ab = (0.5)|a−b | , T1 = [IN ]c{1:K }

and T2 = [IN ]c
{
1+

⌊
K
2

⌋
:
⌊

3K
2

⌋} )

Theorem III.2. Consider a family of transmit correlation
matrices Rtx and a family of precoding matrices T =

{T1, ..,T |T |} as a function of s. Then the vector of eigenvalues
v = [λi1m1, λi2m2, ..., λiLmL ] for any finite L, 1 ≤ i1, ..., iL ≤ |T |
and 1 ≤ m1, ...,mL ≤ M are jointly Gaussian distributed as
s→∞, with second-order statistics as given in Theorem III.1,
if:

1) The eigenvalues of Rrx are all distinct.
2) Ti` = Ui` ⊗ V for all 1 ≤ ` ≤ L, where ⊗ defines the

Kronecker product, V is a s × s unitary matrix and Ui`

is any fixed No × Ko semi-unitary matrix.
3) The transmit-correlation matrix eigenvalues satisfy

lims→∞
(λtx

1 )
2∑s

k=1 (λ
tx
N+1−k )

2 = 0.

Proof. See Appendix C. �

Some examples of families of transmit correlation matrices
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Fig. 2. Asymptotic convergence of the distribution of normalized channel
eigen-values for a restricted precoded system, as a function K : (a) Plots
the empirical probability distribution of the eigenvalue λ11 (b) Compares the
kurtosis and skewness of the bi-variate random vectors v = {λ11, λ21 } and
v = {logλ11, logλ21 } to a bi-variate Gaussian with same second-order statis-
tics

(
system parameters: N = 2K ,M = 2, [Rtx]ab = (0.5)|a−b | , [Rrx]ab =

(0.5)|a−b | , T = {T1, T2 } where T1 = [IN ]c{1:K } , T2 = [IN ]c
{
1+

⌊
K
2

⌋
:
⌊

3K
2

⌋}
and 5000 samples

)

which satisfy the skewness constraint (condition 3) are dis-
cussed in Appendix D. Intuitively, the theorem states that if
the eigenvalues of the transmit correlation matrix are not too
skewed (so that Lyapunov’s central limit theorem is applicable)
then the normalized channel eigenvalues corresponding to
the precoding matrices that are sufficiently well separated in
their column space are asymptotically jointly Gaussian. To
characterize this convergence, the empirical distribution of
the normalized channel eigenvalues for a sample restricted
precoded system is plotted in Fig. 2a for different values of
K . Following the approach in [27], to test the joint normality,
the Kurtosis and Skewness of a vector of eigenvalues v
(corresponding to a well-separated codebook) are plotted in
Fig. 2b as a function of K . From [27], for a large sample
set from a p-variate Gaussian distribution, the skewness and
kurtosis converge to the values of 0 and p(p+2), respectively.

Both figures suggest that though the joint distribution is
asymptotically Gaussian, the convergence is very slow. Such
large values of K may be impractical and therefore, other
approximations to the joint distribution are required in the
finite antenna regime.

In this paper, we propose a joint lognormal distribution
as an approximation for the normalized channel eigenvalue
distribution in the finite antenna regime. We observe from Fig.
2a that in the non-asymptotic regime, a lognormal distribution
may indeed be a better fit for the marginal distribution. In Fig.
2b, the kurtosis and skewness for the logarithm of eigenvalues
are also depicted. The quick convergence of these parameters
with K provides further credence to this hypothesis. Apart
from ensuring that the eigenvalues are always non-negative,
a joint-lognormal approximation for eigenvalues also ensures
that the capacity is Gaussian distributed in the high SNR
regime. This is an intuitively pleasing result and is consistent
with prior literature [28], [29].

Approximation III.2. In the rest of the paper, we shall
approximate the normalized channel eigenvalues for any set
of precoding matrices to be jointly lognormally distributed in
the non-asymptotic regime.

Unlike in Theorem III.2, which considers only precoding
matrices that are sufficiently well separated, here we approx-
imate the eigenvalues corresponding to any set of precoding
matrices to be jointly lognormal distributed. The validity of
this approximation is studied in Fig. 3 wherein the Skewness
and Kurtosis for the eigenvalues corresponding to all precoding
matrices of a sample antenna selection system are plotted.
These results also show that a jointly lognormal distribution
is a better fit than a Gaussian fit for the normalized channel
eigenvalues. However, even for the logarithm of eigenvalues,
the Skewness and Kurtosis values deviate partially from those
of a Gaussian distribution, thereby suggesting that Approx.
III.2 is not very accurate. However, this approximation is
needed for analytical tractability. In Sec. IV, it is demonstrated
that the resulting approximation error in estimating the channel
capacity is relatively small.

IV. CAPACITY ANALYSIS

The individual channel capacities for i = 1, .., |T | can be
expressed in the form Ci(αi,H) ,

∑M
m=1 log(1 + αiλim) where

the αis are suitably chosen constants. In particular, inspection
of (3)-(4) and the definition of normalized channel eigenvalues

(see Section III) reveals that for LFP αi =
ρTr{T†iRtxTi }

K while

for TAS, αi =
ρTr{T†iRtxTi }

M . For sufficiently large values of αi ,
we can approximate:

Ci(αi,H) ≈
M∑
m=1

log (αiλim) (8)

Now, from Approx. III.2, for moderately large values of αi
we have:

{C1(α1,H), . . . ,C |T |(α |T |,H))} ∼ Jointly Gaussian (9)
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Fig. 3. Comparison of Skewness and Kurtosis of the set of normal-
ized channel eigenvalues v = {λ11, .., λ|T | ,1 } and their logarithms v =
{logλ11, .., logλ|T | ,1 } to a Gaussian distribution with same second-order
statistics, in an antenna selection system

(
system parameters: N = 2K ,M =

1, [Rtx]ab = (0.5)|a−b | , [Rrx]ab = (0.5)|a−b | , T = {T |T is a N ×

K submatrx of IN } and 10000 samples
) 9

Additionally, using Approx. III.1, (8) and results on the
second-order statistics of a lognormal random vector [30], we
can easily show that:

C̄i , E{Ci(αi,H)} ≈
M∑
m=1

log


αi Ûµ

2
im√

Ûµ2
im +

ÛK ii
mm

 (10)

κi j , E{Ci(αi,H)Cj(αj,H)}
−E{Ci(αi,H)}E{Cj(αj,H)}

≈
∑
m,n

log

[
Ûµim Ûµjn + ÛK

i j
mn

Ûµim Ûµjn

]
=

M∑
m=1

log

[
Ûµim Ûµjm + ÛK

i j
mm

Ûµim Ûµjm

]
(11)

A comparison of the approximate joint statistics and marginal
distribution of Ci(αi,H) to Monte-Carlo simulations for a
sample antenna selection system is given in Fig. 4, as a
function of K . The results show that the approximations are
tight for K ≥ 4. In Fig. 4c, the skewness and kurtosis of the
vector of individual capacities corresponding to all precoding
matrices for the antenna selection system are studied. The
close fit to a Gaussian distribution suggests that the impact of
Approx. III.2 on capacity is small. Similar results have been
observed for a wide variety of system parameters.

A. System capacity

A general abstraction of the system capacity expressions
(3)–(4) can be given by:

Cmax(H) = max
1≤i≤ |T |

{Ci(αi,H)} (12)

Note that (9)–(11) provide a model that fully characterizes
the joint distribution of the individual capacities. From (9),

9Though v is a
(N
K

)
random vector, the Kurtosis and Skewness are computed

only for the dominant subspace, which has N principal components.
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Kurtosis: v = {C1(α1,H), .., C|T |(α|T |,H)}

Kurtosis: N-variate Gaussian
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(c) Skewness-Kurtosis

Fig. 4. Individual capacity distribution of an antenna selection system:
(a) Compares the joint second-order statistics of capacities across different
precoding matrices as a function of K (b) Compares the empirical PDF
of C1(α1,H) to a Gaussian distribution with mean and variance as given
by (10)-(11) (c) Compares skewness and kurtosis of the set of channel
capacities v = {C1(α1,H), ..,CT (α|T | ,H)} to a Gaussian distribution with
same second-order statistics

(
system parameters: N = 2K ,M = 2, ρ =

10, [Rtx]ab = (0.5)|a−b | , [Rrx]ab = (0.5)|a−b | , αi =
ρTr{T†

i
RtxTi }

M ,
T1 = [IN ]c{1:K } , T2 = [IN ]c

{
1+

⌊
K
2

⌋
:
⌊

3K
2

⌋} , T3 = [IN ]c{2:(K+1)} , T =

{T |T is a N × K submatrx of IN } and 10000 samples
)9
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Cmax(H) can be expressed as the largest element of a correlated
Gaussian vector.

For the maximum of a set of correlated Gaussian random
variables, neither the exact distribution nor even the mean is
not known in closed form. Existing methods [31] to solve
for them are too cumbersome, especially when |T | is large.
Though several bounds exist on the mean [32]–[36], they
are not uniformly tight across all correlation structures. On
the other hand, numerical approaches like in [37], [38] are
recursive and therefore are likely to accumulate significant
amount of error when the number of variables |T | are large.
This is specifically relevant to our scenario since the codebook
size |T | can be very large. We therefore formulate a new
approach to compute the distribution and mean of the largest
element of a correlated Gaussian vector. Note that:

Cmax(H) =


[C1(α1,H), ...,C |T |(α |T |,H)]




∞

= log


[eC1(α1 ,H), ..., eC|T |(α|T | ,H)]




∞

≈ log


[eC1(α1 ,H), ..., eC|T |(α|T | ,H)]




p

for p ≥ log |T |

=
1
p

log
[ |T |∑
i=1

epCi (αi ,H)
]

(13)

where the second last step follows from the norm inequalities
L−1/p ‖a‖p ≤ ‖a‖∞ ≤ ‖a‖p for any vector a of length L.

Since epCi (αi ,H) ≈
(∏M

m=1 αiλim

)p
is lognormal distributed,

equation (13) above shows that the largest element of a
correlated Gaussian vector can be approximately represented
as the logarithm of a sum of correlated lognormals.

B. Sum of correlated lognormals

It is well known that the sum of correlated lognormal ran-
dom variables is approximately lognormal (see [39] and refer-
ences therein). Of the many approximations for characterizing
this sum, the moment and cumulant matching approaches, such
as [40], [41], yield a poor fit in the lower tail regions of
the distribution. On the other hand, the moment generating
function matching approaches, like [42], are too cumbersome
when the number of variables |T | is large. Here, we propose
the use of the approach in [43] (reproduced here as algorithm
1), which extends the work in [44] to the correlated case.
Similar to [37], this algorithm is recursive and therefore also
shares the same drawback of accumulating error. However, the
drawback is a by-product of the algorithm in [43] and not of
our approach in (13). Any new results on sum of correlated
lognormals can readily be used to resolve this drawback. To
check the goodness of fit, the empirical distribution of the
largest element of a sample Gaussian vector, and its p-norm
approximation are compared to the distributions obtained using
Algorithm 1, Clark [38] and second-order moment-matching
[40] in Fig. 5. The results show that both Clark as well as
Algorithm 1 give good approximations to the distribution of
the largest element.

In summary, the system capacity Cmax(H) can be approx-
imated as a Gaussian random variable and its mean and
variance can be computed via Algorithm 1.

Algorithm 1: Statistics of the largest element of a
correlated Gaussian vector

Inputs: p, C̄i, κi j forall 1 ≤ i, j ≤ |T | // Defined as in
(10)-(13)
µw(1) = µs(1) = pC̄1
σ2
w(1) = σ2

s (1) = p2κ11
Q(1,∗) = p2κ1∗
for i = 2 to |T | do
µw(i) = pC̄i − µs(i − 1)
σ2
w(i) = p2κii + σ

2
s (i − 1) − 2Q(i − 1, i)

µs(i) = µs(i − 1) + G1
(
σw(i), µw(i)

)
σ2
s (i) = σ

2
s (i − 1) − G1

(
σw(i), µw(i)

)
+G2

(
σw(i), µw(i)

)
+2

[
Q(i − 1, i) − σ2

s (i−1)G3
(
σw (i),µw (i)

)
σ2

w (i)

]
for j = 1 to |T | do

Q(i, j) = Q(i − 1, j)
[
1 − G3

(
σw (i),µw (i)

)
σ2

w (i)

]
+

p2κi jG3
(
σw (i),µw (i)

)
σ2

w (i)
end for

end for
// G1(σ, µ),G2(σ, µ),G3(σ, µ) are as defined in
Appendix of [43]
return µs(|T |)/p // Mean of Cmax
return σ2

s (|T |)/p
2 // Variance of Cmax
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Fig. 5. Distribution of largest element of a Gaussian vector: x-jointly Gaussian
vector, y , exp [x] (element-wise); Clark, moment-match refer to solutions
from [38] and [40], respectively

(
simulation parameters: |X | = 40, E{Xi } = 1,

E{XiX j } = 1.5 + δi j , p = 8
)

V. SIMULATION RESULTS

Using the results derived in the previous sections, we shall
now analyze the system capacity of several practical restricted
precoded systems. The simulation layout considers a single
user, cellular downlink channel operating at 2.4 GHz. Both
the transmitter and receiver have a uniform, linear antenna
array with antenna spacings of dtx = 5cm and drx = 2cm,
respectively (unless otherwise stated). The transmitter expe-
riences a Laplacian power angle spectrum (PAS) with mean
angle of arrival (AoA) = π/6 rads and an angle spread (AS)
of π/10 rads. The receiver on the other hand experiences a
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uniform power angle spectrum.10 As a first simple example,
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Fig. 6. Comparison of capacity of an antenna selection system as predicted
by Algorithm1 to Monte-Carlo simulations and Gauss-approx (a) Plots PDF
of system capacity for K = 2, 6 (b) Plots the mean capacity as a function
of transmit antenna spacing (K = 2)

(
system parameters: N = 2K , M = 2,

SNR ρ = 10
)

we consider an antenna selection system in Fig. 6. In Fig. 6a,
the PDF of capacity as computed by Algorithm 1 is compared
to Monte-Carlo simulations. To quantify the origin of the
mismatch in distributions, the PDF of the largest element of a
Gaussian vector with the second-order statistics given by (10)-
(11) is also plotted, labeled as Gauss-approx. The gap between
Monte-Carlo and Gauss-approx quantifies the error due to
inaccuracy of Approx. III.1 and III.2. We observe that this gap
does not increase much with K . On the other hand, the gap
between Gauss-approx and Algorithm 1 quantifies the error
due to inaccuracy of the approach in [43]. This gap increases
with K , owing to the error accumulation in the recursive steps
of [43] for large codebooks

(
|T | =

(N
K

) )
. In Fig. 6b, the impact

of transmit antenna spacing on ergodic capacity is compared.
As seen from the results, though Algorithm 1 overestimates the

10Tx/Rx correlation matrix is calculated as: [Rx]ab =∫ π
−π

PAS(θ)e
2π j(a−b)dx sin θ

λ dθ
/ ∫ π
−π

PAS(φ)dφ, where j =
√
−1, λ is

the wavelength at 2.4GHz and x=tx/rx. All arrays and multipath components
are in the horizontal plane.

capacity, it accurately reflects the impact of system parameters
like antenna spacing on capacity.

For the same simulation layout, the impact of the codebook
on ergodic capacity for a limited feedback precoding system
is studied in Fig. 7. The influence of the codebook shape on
capacity is studied in Fig. 7a, where we use skewed code-
books Tα generated from a Grassmannian packed codebook T̂
as: Tα =

{
(Rtx)

αT̂i

[
T̂†i (Rtx)

2αT̂i

]−1/2��T̂i ∈ T̂

}
. The skewing

factor α controls the spacing between the precoding matrices
of the codebook. The results suggest that Algorithm 1 gives
a good estimate of dependence of capacity on the codebook
shape. The impact of codebook size on ergodic capacity is
studied in Fig. 7b. Here, we use Grasmannian codebooks of
different sizes. We observe that Algorithm 1 gives accurate
results for small codebooks but the error increases with
codebook size |T |. This is again due to the error accumulation
in the recursive steps of Algorithm 1. The sudden dip at 4
bits of feedback is because the codebook is arbitrary and not
customized to the chosen PAS.
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Fig. 7. Impact of the codebook on capacity of a limited feedback precoding
system, as predicted by Algorithm1, Monte-Carlo simulations and Gauss-
approx (a) Studies impact of the codebook skewing-factor

(
N = 8, K =

M = 2, SNR ρ = 10, | T̂ | = 256, T̂ is a Grassmannian codebook from [45]
)

(b) Studies impact of codebook size
(
N = 4, K = M = 2, SNR ρ = 10, T

for each codebook size is from [45]
)
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VI. APPLICATION TO CODEBOOK DESIGN FOR LIMITED
FEEDBACK SYSTEMS

It is widely accepted that for an uncorrelated i.i.d. channel,
a Grassmannian-packed codebook is near optimal for a limited
feedback system [9], [11], [46]. However, for a correlated
channel, no consensus exists on the best codebook design.
This is partly because no uniformly tight (over the space
of all codebooks) bounds or approximations to the system
capacity are available for a correlated channel. In this section,
using Algorithm 1 as the objective function, we shall use a
numerical-gradient ascent algorithm to search for the code-
book that maximizes the mean capacity. Here, the gradient of
mean capacity (as predicted by Algorithm 1) with respect to
a matrix TCB (formed by appending all the precoders in the
codebook T ) is computed numerically. For ease of pictorial
representation, we consider a limited feedback beamforming
setting with N = 3, K = M = 1 and other parameters
same as in Sec. V. For a codebook size of |T | = 3, we
compare the beam-patterns formed by the precoding vectors
of the optimized codebook to a Discrete Fourier Transform
(DFT) codebook12 in Fig. 8. The estimated PAS11 is also
plotted for comparison. As the results show, unlike the DFT
codebook that is designed for generic correlated channels, the
optimized codebook here adapts to the user PAS leading to an
increase in capacity from 2.74 to 2.9 nats/s/Hz. Though several
other families of codebooks have been proposed in literature
[8], [12]–[14] for a correlated channel, they involve some
parameters which need to be chosen. Algorithm 1 is also useful
in such scenarios since it enables picking the mean/outage
capacity maximizing values for these parameters.

VII. CONCLUSIONS

This paper analyzes a special class of MIMO systems called
restricted precoded systems and discusses how many practi-
cally relevant systems like antenna selection, beam selection
and limited feedback precoding fall under this class. It is
shown that the system capacity of restricted precoded systems
can be expressed as a function of the eigenvalues of a set of
coupled doubly-correlated Wishart matrices. The eigenvalues
are shown to be jointly Gaussian in the large antenna limit, if
a set of conditions on the transmit correlation and codebook
are satisfied. The asymptotic second-order statistics of the
eigenvalues are also derived and the results suggest that their
convergence is very quick. We propose, and verify, that in the
finite antenna regime, a joint-lognormal distribution is a better
fit to the eigenvalue distribution. Using these results, and a few
simplifying approximations, we show that the system capacity
for a restricted precoded system can be approximated as the
largest element of a correlated Gaussian vector. We propose a
new approach for characterizing its distribution and, in the
process, show that the problem of finding the distribution
of the sum of lognormals and the problem of finding the
distribution of the largest element of a Gaussian vector are

11Est.PAS(θ) =
∑

ab [Rtx]abe
−

2π j(a−b)dtx sin θ
λ , where j =

√
−1 and λ is

the wavelength at 2.4GHz.
12For K = 1, |T | = N , the columns of a DFT matrix form a Grassmannian

codebook that is well suited for correlated channels [6].
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Fig. 8. Comparison of beam-patterns for optimized codebook and the
Grassmannian codebook

(
system parameters: N = 3, K = M = 1, SNR

ρ = 10
)11

equivalent. Simulations results, for both an antenna selection
system and a limited feedback precoded system, suggest that
the proposed algorithm slightly overestimates the capacity but
predicts the dependence of capacity on system parameters like
number of antennas, antenna spacing and codebook shape &
size accurately. We also observe that a significant portion of
the mismatch comes from error accumulation in the recursive
steps of the proposed algorithm. Any non-recursive approach
to characterize the sum of lognormals can be useful in tackling
this problem. We also demonstrate, via an example, that the
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proposed algorithm can be used in the design of near-optimal
codebooks for a limited feedback system.

APPENDIX A

(Proof of Theorem III.1). For any value of N , K and ∀i ∈
{1, .., |T |}, from (1) we have:

Qi =
HTiT†i H

†

Tr{T†i RtxTi}
=

R1/2
rx GR1/2

tx TiT†i R
1/2
tx G†R1/2

rx

Tr{T†i RtxTi}

= R1/2
rx

[
K∑
k=1

ĥi
k[ĥ

i
k]
†

]
R1/2

rx (14)

where ĥi
k
= GR1/2

tx [Ti]c{k }
/√

Tr{T†i RtxTi}. Defining Q̂i =∑K
k=1 ĥi

k
[ĥi

k
]
†

and taking expectations we get:

E{[Q̂i]ab}

=
∑
k

E{[G]r{a}R
1/2
tx [Ti]c{k }[Ti]

†

c{k }R
1/2
tx

(
[G]r{b}

)†
}

Tr{T†i RtxTi}

=
∑
k

[Ti]
†

c{k }R
1/2
tx E{

(
[G]r{b}

)†
[G]r{a}}R

1/2
tx [Ti]c{k }

Tr{T†i RtxTi}

= δab (15)

where δab = 1 if a = b and δab = 0 if a , b (the Kronecker
delta function) and the last step follows from the fact that G
has i.i.d. CN(0,1) entries.

E
{��[Q̂i]ab

��2} = K∑
k=1

K∑̀
=1
E

{
[ĥi

k]a[ĥ
i
k]
†

b
[ĥi
`]b[ĥ

i
`]
†

a

}
=
∑
k ,`

[
E

{
[ĥi

k]a[ĥ
i
k]
†

b

}
E

{
[ĥi
`]b[ĥ

i
`]
†

a

}
+E

{
[ĥi

k]a[ĥ
i
`]
†

a

}
E

{
[ĥi

k]
†

b
[ĥi
`]b

} ]
(16a)

=
��E{[Q̂i]ab}

��2 +∑
k ,`

���E {
[ĥi

k]
†

b
[ĥi
`]b

}���2 (16b)

=
��E{[Q̂i]ab}

��2 +∑
k ,`

[Ti
†RtxTi]

2
lk

Tr{T†i RtxTi}
2

=
��E{[Q̂i]ab}

��2 + ‖T†i RtxTi ‖
2
F

Tr{T†i RtxTi}
2

(16c)

where (16a) follows from the result on the expectation of
the product of four circularly symmetric jointly Gaussian
random variables [47] and (16b) follows from the fact that
the vector ĥi

β has i.i.d entries ∀β ∈ {1, ..,K}. Therefore, if

lims→∞
‖T†iRtxTi ‖F

Tr{T†iRtxTi }
= 0, from (14), (16c) we have:

lim
s→∞

Q̂i
ms
= IM ⇒ lim

s→∞
Qi

ms
= Rrx (17)

where ms
= denotes element-wise mean square convergence.

From the Hoffman-Weilandt inequality [48], there exists a
permutation matrix P such that ‖PΛiP†−Λrx‖F ≤ ‖Qi−Rrx‖F,

where Λi,Λ
rx are the eigenvalue matrices of Qi,Rrx, respec-

tively. Without loss of generality, assuming Λi is always picked
in this permutation, we have:

lim
s→∞
Λi

ms
= Λrx (18)

Let eim be an eigenvector of Qi corresponding to an eigenvalue
λim = [Λi]m,m. Now as s→∞:

Qieim = λimeim (19a)
⇒ Rrxeim

ms
= λrx

m eim [From (17) and (18)]

⇒ eim
ms
= e jφerx

m (19b)

for some angle φ (which may be a function of G), where
(19b) follows from the fact that all the eigenvalues of Rrx
are distinct. Now since both the eigenvalues and eigenvectors
converge in mean square sense, following a similar procedure
to [20], from (19a) we have:

[Qi − Rrx + Rrx][eim − e jφerx
m + e jφerx

m ]

= [λim − λ
rx
m + λ

rx
m ][eim − e jφerx

m + e jφerx
m ]

⇒ [Qi − Rrx]e jφerx
m + Rrx[eim − e jφerx

m ]

' [λim − λ
rx
m ]e

jφerx
m + λ

rx
m [eim − e jφerx

m ] (20a)

⇒ erx
m
†
[Qi − Rrx]erx

m ' λim − λ
rx
m (20b)

⇒ λim ' erx
m
†Qierx

m (20c)

where, as in [20], we use “'" to denote a first-order approxi-
mation (i.e., an equality in which the higher order terms that
do not influence the asymptotic statistics of λim as s→∞ are
neglected). Note that (20a) follows by neglecting the higher
order terms and (20b) follows by premultiplying both sides by
e−jφ[erx

m ]
†. This proves the asymptotic first-order expression

for the eigenvalues (5).
By taking expectations on both sides of (20c), the asymp-

totic mean can be expressed as:

µim = E{λim} ' erx
m
†E {Qi} erx

m

' λrx
m [From (17)] (21)

Similarly, for cross-correlation we have:

E
{
λimλjn

}
' E

{
erx
m
†Qierx

merx
n
†Qjerx

n

}
= λrx

mλ
rx
n

K∑
k=1

K∑̀
=1
E

{
erx
m
†ĥi

k[ĥ
i
k]
†erx

merx
n
†ĥj
`
[ĥj
`
]
†
erx
n

}
(22)

where the last step follows from (14). Notice that erx
η
†ĥαβ are

all circularly symmetric jointly Gaussian random variables for
all 1 ≤ η ≤ M , 1 ≤ α ≤ |T |, 1 ≤ β ≤ K . From the result
on the expectation of the product of four complex, circularly
symmetric jointly Gaussian random variables [47], we have:

E
{
λimλjn

}
' λrx

mλ
rx
n

K∑
k=1

K∑̀
=1

erx
m
†E

{
ĥi
k[ĥ

i
k]
†
}

erx
merx

n
†E

{
ĥj
`
[ĥj
`
]
†
}

erx
n

+ λrx
mλ

rx
n

K∑
k=1

K∑̀
=1

erx
m
†E

{
ĥi
k[ĥ

j
`
]
†
}

erx
n erx

n
†E

{
ĥj
`
[ĥi

k]
†
}

erx
m

⇒ E
{
λimλjn

}
− µimµjn
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'
∑
k ,`

λrx
mλ

rx
n

���erx
m
†E{GR1/2

tx [Ti]c{k }[Tj]
†

c{` }R
1/2
tx G†}erx

n

���2
[Tr{T†i RtxTi}Tr{T†jRtxTj}]

=
∑
k ,`

λrx
mλ

rx
n

���[Tj]
†

c{` }R
1/2
tx E{G

†erx
n erx

m
†G}R1/2

tx [Ti]c{k }

���2
[Tr{T†i RtxTi}Tr{T†jRtxTj}]

=
∑
k ,`

δmnλ
rx
mλ

rx
n

��� ([Tj]c{` }
)†Rtx[Ti]c{k }

���2
[Tr{T†i RtxTi}Tr{T†jRtxTj}]

=

δmnλ
rx
mλ

rx
n




T†jRtxTi




2

F

Tr{T†i RtxTi}Tr{T†jRtxTj}
(23)

where, the penultimate step follows from the fact that G has
i.i.d. entries and erx

m
†erx

n = δmn. This concludes the proof. �

APPENDIX B

(Proof of proposition III.1.1). From Theorem III.1, the re-
quired condition is that

lim
K→∞

‖T†i RtxTi ‖F

Tr{T†i RtxTi}
= 0 ∀i ∈ {1, .., |T |}

Note that:

‖T†i RtxTi ‖F

Tr{T†i RtxTi}
=
‖λ{T†i RtxTi}‖2

‖λ{T†i RtxTi}‖1

=
‖λ{TiT†i Rtx}‖2

‖λ{TiT†i Rtx}‖1

(24)

where λ{A} is the vector of eigenvalues for a square matrix
A. We define λ↑{A} and λ↓{A} as sortings of λ{A} in
ascending and descending orders, respectively. From results
on eigenvalue majorization [49, Eqn 3.20], we have for all
1 ≤ L ≤ N:

L∏̀
=1
λ
↓

`
{TiT†i }λ

↑

`
{Rtx} ≤

L∏̀
=1
λ
↓

`
{TiT†i Rtx}

≤

L∏̀
=1
λ
↓

`
{TiT†i }λ

↓

`
{Rtx} (25)

where λ:
`
{A} is the `-th element of λ:{A}. By taking the

logarithm on both sides we get:

log
[
λ↓{TiT†i } ◦ λ

↑{Rtx}
]
≺ log

[
λ↓{TiT†i Rtx}

]
≺ log

[
λ↓{TiT†i } ◦ λ

↓{Rtx}
]

(26)

where ◦ denotes the Hadamard product, the logarithm is taken
element-wise and a ≺ b implies b majorizes a. Now consider
the function fα(x) = ‖ex‖α where α ∈ {1,2, ...} and the
exponent ex is taken element wise. The function is clearly
permutation invariant in vector x and for any elements xa, xb
of vector x, we have:[

∂ fα(x)
∂xa

−
∂ fα(x)
∂xb

]
(xa−xb) = (xa−xb)

eαxa − eαxb

‖ex‖α−1
α

≥ 0 (27)

Therefore from [49, Th 2.3.14], fα(x) is a Schur-convex
function. From the definition of a Schur convex function and

from (26) we have:

f2
(
log[λ↓{TiT†i Rtx}]

)
f1
(
log[λ↓{TiT†i Rtx}]

) ≤ f2
(
log[λ↓{TiT†i } ◦ λ

↓{Rtx}]
)

f1
(
log[λ↓{TiT†i } ◦ λ

↑{Rtx}]
)

(28)

⇒
‖T†i RtxTi ‖F

Tr{T†i RtxTi}
≤

√∑K
k=1 (λ

tx
k
)
2[∑K

`=1 λ
tx
N+1−`

] (29)

where in the last step we have used the fact that Ti is semi-
unitary with dimension N × K . Alternately, from Hölder’s
inequality:

‖λ{TiT†i Rtx}‖2

‖λ{TiT†i Rtx}‖1

≤
‖λ{TiT†i Rtx}‖∞

‖λ{TiT†i Rtx}‖2

Now following similar steps to before, we have:

‖T†i RtxTi ‖F

Tr{T†i RtxTi}
≤

f∞
(
log[λ↓{TiT†i } ◦ λ

↓{Rtx}]
)

f2
(
log[λ↓{TiT†i } ◦ λ

↑{Rtx}]
)

≤
λtx

1√∑K
`=1

(
λtx
N+1−`

)2
(30)

Therefore a sufficient condition for Theorem III.1 is that the
eigenvalues of Rrx be distinct, and either the right hand side
in (29) or (30) go to zero as s→∞. �

APPENDIX C

(Proof of Theorem III.2). Since K = sKo ≥ s, we have:

(λtx
1 )

2∑K
k=1 (λ

tx
N+1−k)

2 ≤
(λtx

1 )
2∑s

k=1 (λ
tx
N+1−k)

2 (31)

Therefore using (31) and conditions 1,3 of the theorem
statement, from proposition III.1.1, for any 1 ≤ i ≤ |T |,
1 ≤ m ≤ M as s→∞:

λim = erx
m
†Qierx

m =
λrx
m ĝmR1/2

tx TiT†i R
1/2
tx ĝ†m

Tr{T†i RtxTi}
(32)

where ĝm = erx
m
†G is a 1 × N vector with i.i.d. CN(0,1)

entries. Additionally, the second-order statistics of λim are also
as given by (6) and (7).

Now, for any 1 ≤ m ≤ M , consider a set of eigenvalues
v = [λi1m, λi2m, ..., λiLm]. From the Cramer-Wold theorem [50],
these eigenvalues are asymptotically jointly Gaussian iff any
weighted sum converges to a Gaussian distribution as s→∞.
A weighted sum is given by:

w†v =

L∑̀
=1

w`λi`m

= λrx
m ĝmR1/2

tx

[
L∑̀
=1

w`
Ti`T

†

i`

Tr{T†i`RtxTi` }

]
R1/2

tx ĝ†m

Using condition 2 of the theorem statement, we have:

w†v
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= λrx
m ĝmR1/2

tx


©­­­­­­«

L∑̀
=1

w`Ui`U
†

i`

Tr{T†i`RtxTi` }︸                  ︷︷                  ︸
W

ª®®®®®®¬
⊗ VV†


R1/2

tx ĝ†m

d
=

N∑
n=1

λrx
m

��[ĝm]n��2λ↓n{R1/2
tx [W ⊗ VV†]R1/2

tx } (33)

where d
= represents equality in distribution and λ↓n{A} is the n-

th largest eigenvalue of a matrix A. Using Lyapunov’s central
limit theorem, it is easy to show that (33) is asymptotically
Gaussian if (see [20], [51] for details):

lim
s→∞

‖λ{R1/2
tx [W ⊗ VV†]R1/2

tx }‖∞

‖λ{R1/2
tx [W ⊗ VV†]R1/2

tx }‖2

= 0 (34)

where, λ{A} represents the vector of eigenvalues of a matrix
A. Now following similar steps to those in Appendix B (see
(28)), we have:

‖λ{R1/2
tx [W ⊗ VV†]R1/2

tx }‖∞

‖λ{R1/2
tx [W ⊗ VV†]R1/2

tx }‖2

=
‖λ{[W ⊗ Is]Rtx}‖∞
‖λ{[W ⊗ Is]Rtx}‖2

(35)

≤
‖λ↓{W ⊗ Is} ◦ λ↓{Rtx}‖∞

‖λ↓{W ⊗ Is} ◦ λ↑{Rtx}‖2

≤
λ
↓

1{Rtx}λ
↓

1{W}√∑s
`=1

[
λ
↑

`
{Rtx}λ

↓

1{W}
]2

=
λtx

1√∑s
`=1 (λ

tx
N+1−`)

2
(36)

where we use the fact that VV† = Is and λ↓{W ⊗ Is} =
λ↓{W} ⊗ λ↓{Is}. From (34), (36) and condition 3 of the
theorem, w†v is Gaussian distributed ∀w as s→∞. Therefore
the vector v = [λi1m, λi2m, ..., λiLm] is asymptotically jointly
Gaussian distributed. Note that the joint Gaussianity above
trivially also ensures marginal Gaussianity. Now, the joint
Gaussianity of λim and λjn for n , m directly follows from
the marginal Gaussianity and the independence of ĝm and ĝn
in (32). �

APPENDIX D

In this section we shall enumerate some families of N × N
transmit correlation matrices, where N = Nos, which satisfy:

lims→∞
(λtx

1 )
2∑s

k=1 (λ
tx
N+1−k )

2 = 0. As discussed in Appendix C, this

condition also implies Proposition III.1.1.
1) Exponential Correlation: In this case, the elements of

the correlation matrix are given by [Rtx]ab = ρ |a−b | for
|ρ| < 1. That this matrix satisfies the required constraint can
be verified using the bounds on eigenvalues as derived in [52].

2) Arbitrary power angle spectrum (PAS): We consider a
uniform linear antenna array at the transmitter with spacing
dtx. Assuming the multipath components to be only in the

horizontal plane, the elements of the transmit correlation
matrix can be expressed as:

[Rtx]ab =

∫ 1

0
e j2π f (a−b)

[
∞∑

n=−∞

ξ( f − n)

]
︸              ︷︷              ︸

ζ ( f )

df (37)

where, ξ( f )

=


λPAS

(
arcsin( f λdtx

)

)
+λPAS

(
π−arcsin( f λdtx

)

)
√
d2

tx−λ
2 f 2

for λ | f |
dtx
≤ 1

0 for λ | f |
dtx

> 1
(38)

j =
√
−1, λ is the wavelength and PAS(θ) is the normalized

PAS computed as PAS(θ) = PAS(θ)
/ ∫ π
−π

PAS(φ)dφ. We define
Fa as the smallest, possibly non-contiguous, sub-interval of
[0,1] such that:

min
f ∈[0,1]−Fa

{ζ( f )} ≥ max
f ∈Fa
{ζ( f )} and

∫
Fa

f df = 1/a

where ζ( f ) is as defined in (37). Since Rtx is a Toeplitz matrix,
from Szego’s results on eigenvalues of Toeplitz matrices [53],
as s→∞ we have:

(λtx
1 )

2∑s
k=1 (λ

tx
N+1−k)

2 =
max f ∈F1

{
ζ2( f )

}
N

∫
f ′∈FNo

ζ2( f ′)df ′
(39)

It can be easily verified that the right hand side of (39) goes
to zero if:
• PAS(θ) is continuous, maxθ∈(−π,π] {PAS(θ)} < ∞ and

PAS( π2 ) = PAS(− π2 ) = 0
• The constant No is such that

∫
f ′∈FNo

ζ2( f ′)df ′ > 0.

The former condition is almost always satisfied for a sectored
base-station. The latter condition is more stringent. However,
it can be relaxed if we restrict the codebook T such that
∀i lims→∞ rank{T†i RtxTi}/s > Ko − 1.
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inputâĂŞmultiple-output systems, wireless systems for healthcare, and novel
cellular architectures. He has authored, coauthored, or edited four books
(among them the textbook Wireless Communications, Wiley-IEEE Press), 16
book chapters, some 200 journal papers, 270 conference papers, as well as
more than 80 patents and 70 standards contributions.

Dr. Molisch has been an Editor of a number of journals and special
issues, General Chair, Tecnical Program Committee Chair, or Symposium
Chair of multiple international conferences, as well as Chairman of various
international standardization groups. He is a Fellow of the National Academy
of Inventors, Fellow of the AAAS, Fellow of the IET, an IEEE Distinguished
Lecturer, and a member of the Austrian Academy of Sciences. He has received
numerous awards, among them the Donald Fink Prize of the IEEE, and the
Eric Sumner Award of the IEEE.

Haralabos C. Papadopoulos (S’92–M’98) received
the S.B., S.M., and Ph.D. degrees from the Mas-
sachusetts Institute of Technology, Cambridge, MA,
all in electrical engineering and computer science,
in 1990, 1993, and 1998, respectively.

Since December 2005, he has been with DO-
COMO Innovations, Palo Alto, CA, working on
physical-layer algorithms for wireless communica-
tion systems and architectures. From 1998 to 2005,
he was on the faculty of the Department of Electrical
and Computer Engineering, University of Maryland,

College Park, MD, and held a joint appointment with the Institute of Systems
Research. During his 1993–1995 summer visits to AT&T Bell Labs, Murray
Hill, NJ, he worked on shared time-division duplexing systems and digital
audio broadcasting. His research interests are in the areas of communications
and signal processing, with emphasis on resource-efficient algorithms and
architectures for wireless communication systems.

Dr. Papadopoulos is the recipient of an NSF CAREER Award (2000), the
G. Corcoran Award (2000) given by the University of Maryland, College Park,
and the 1994 F. C. Hennie Award (1994) given by the MIT EECS department.
He is also a coauthor of the VTC Fall 2009 Best Student Paper Award. He is
a member of Eta Kappa Nu and Tau Beta Pi. He is also active in the industry
and an inventor on several issued and pending patents.


