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Abstract—Many wireless transceivers, such as massive-MIMO
and Rake, are designed to provide high diversity order. In order
to reduce cost, low-complexity switched transceivers, e.g., hybrid
antenna preprocessing with selection, or S-Rake, which employ
a limited number of RF chains or correlators, are popular.
This paper shows that the presence of limited number of RF
chains or correlators in such transceivers introduces an inherent
trade-off between system performance and the channel estimation
overhead. We prove that to maximize achievable rate, it is optimal
to perform channel estimation for only a subset of diversity
branches with the highest second moments, if the diversity
branches have the same fading parameters but different mean
powers. We also prove that the achievable data-rate is a unimodal
function of the size of this subset L, which ensures that any
locally optimum L is also globally optimum. A computationally
efficient approximation for the ergodic capacity is introduced,
which reduces the cost of finding the optimal L significantly.
Simulation results for some practically important settings suggest
that the optimal choice of L can improve the data rate by a factor
of 20− 30%.

I. INTRODUCTION

Diversity, e.g., in the form of spatial (antenna) diversity
or delay diversity, is the key method to reduce the negative
impact of fading in wireless communications systems. The
general trend towards larger number of antennas and/or wider
bandwidths means that the number of diversity branches is
increasing. For example, a massive multiple-input-multiple-
output (MIMO) base station might have 100 antenna elements,
or an ultrawideband (UWB) receiver might have ≈ 50 Rake
fingers.

While such a high number of diversity branches brings per-
formance advantages, the associated commensurate increase
in the number of up/down-conversion chains1 drastically in-
creases the implementation cost and energy consumption in
the transceivers. As a solution, low complexity switched
transceivers have been proposed in the literature, such as
hybrid antenna preprocessing with selection [1], [2] and S-
Rake [3], [4]. In such systems, the number of up/down-
conversion chains (K) are fewer than the number of diversity

Financial support by KACST project under grant number 33-878 is grate-
fully acknowledged.

1We henceforth only say “up/down-conversion chains”, though this always
means “up/down-conversion chains for massive MIMO or correlators for Rake
receivers.”

branches the channel offers and an array of switches select
K out of the N diversity branches for down-conversion.
For such a low-complexity receiver (assuming a single an-
tenna transmitter and in the absence of interference), the
capacity optimal way for combining the received signals is
generalized selection combining (GSC) [5], also known as
hybrid selection / maximum ratio combining [6]. In GSC,
the instantaneously strongest K diversity branches are down-
converted and maximum-ratio combined. The performance of
a GSC system has been studied in great detail for independent
Rayleigh fading [7], Nakagami-m fading [8] and arbitrary
fading [9]–[11] channels. Similarly, the correlated channel
scenarios have been discussed in [8], [12].

For implementing GSC, the receiver (RX) needs the channel
state information (CSI) for all the diversity paths. This CSI can
be acquired by transmitting a known pilot sequence from the
transmitter (TX) during each channel coherence time interval.
However, for low complexity systems, since the RX has only
K < N down-conversion chains, for each transmitted pilot
sequence the RX can acquire CSI for only K diversity paths.
Therefore, the pilot sequence has to be re-transmitted ⌈N/K⌉
times to acquire the CSI for all the diversity paths.2 This
overhead for training can be especially large when N ≫ K,
the pilot sequence is long and/or the channel coherence time
is short.

In this paper we suggest and analyze a novel method to
minimize the impact of this training overhead.3 It is motivated
by the fact that in practice, not all diversity branches have the
same average power: for example, in massive MIMO with
preprocessing, the different effective beams that are available
at the output of the preprocessor for selection carry different
powers. Consequently, some diversity branches might make
only a minor contribution to boosting the system capacity.
Therefore, it is better to acquire CSI for only a subset of L
paths, where K ≤ L ≤ N , and L is a trade-off between
the training overhead the performance gain from increased
diversity. Obviously, the determination of this subset has to
be based on second-order statistics of the diversity paths only;

2Fewer re-transmissions may be required with channel sparsity constraints.
In this work we assume no such sparsity constraints.

3A preliminary study of this trade-off for a UWB system with Rayleigh
faded diversity paths has been considered by us in [13].



those second-order statistics change very slowly with time,
and thus can be easily tracked at the RX.

The main contributions of this paper are as follows:
1) We formulate the problem of finding the data-rate max-

imizing L and corresponding set of paths L∗(L).
2) We prove that for a given value of L, a simple decision

rule can be used to find the corresponding optimal set
of paths L∗(L).

3) We prove that the achievable data-rate is a unimodal
function of L, which ensures that any locally optimum
L is also globally optimum.

4) We propose a computationally efficient approximation
for the ergodic capacity of a GSC system, which signif-
icantly reduces the cost of finding optimal L.

5) We study the diversity versus training overhead trade-off
in two practically important low complexity switched
RXs.

Notation: Scalars are represented by light-case letters;
vectors by bold-case letters; matrices by capitalized bold-
case letters; and sets by calligraphic letters. Additionally, ai
represents the i-th element of a vector a and |A| the cardinality
of a set A. Also, E{} represents the expectation operator, IA
the A×A identity matrix, OA×B the A×B all-zero matrix,
⌈a⌉ the smallest integer larger than a and fx,Fx the probability
density and cumulative distribution for a random variable x,
respectively.

II. GENERAL ASSUMPTIONS AND CHANNEL MODEL

We consider a GSC system with a single antenna TX. The
channel offers N diversity paths and the RX only picks K di-
versity paths for down-conversion. Without loss of generality,
we assume N is a multiple of K.4 Under these assumptions,
the base-band equivalent received signal vector during any
symbol duration can be represented as:

y =
√
ρShx+ Sn (1)

where y is the K × 1 received signal vector corresponding to
the K down-conversion chains, ρ is the average signal-to-noise
ratio (SNR), S is a K×N sub-matrix of IN that picks the best
K branches for down-conversion, h is the N × 1 normalized
channel vector corresponding to the N diversity paths, x is the
transmit data symbol and n ∼ CN (ON×N , IN ) is the N × 1
normalized additive white gaussian noise vector. We assume
that the channel diversity paths hi are independent but not
identically distributed (i.n.i.d)5 and their amplitudes follow a
Nakagami-m distribution with the probability density function
given by:

f|hi|(x) =
2mm

Γ(m)Ωm
i

x2m−1 exp{−mx2

Ωi
} (2)

4If this is not true, dummy diversity paths of zero magnitude can be
appended

5In a Single Input Multiple Output (SIMO) channel, the signals at the
antenna elements are often correlated. However, in many common hybrid
preprocessing systems [1], [14], [15], the effective channel can be modeled
as an i.n.i.d vector, since those systems effectively perform beam selection,
and the fading in different beams is independent.

where the shape parameter (m) is fixed but the spread param-
eter (Ωi) is different for each diversity path i. Without loss of
generality, the channel is normalized such that

∑N
i=1 Ωi = N .

Some relevant distribution parameters of hi are enlisted in
Table I. We assume the RX has knowledge of the average
power E{|hi|2} = Ωi for all the N paths.6 Since the average
power changes very slowly, it can be easily tracked for all the
N paths (see [16] and references therein).

TABLE I
DISTRIBUTION PARAMETERS OF DIVERSITY PATH hi

CDF: F|hi|(x)
Γlower,inc(m,mx2/Ωi)

Γ(m)

Avg. power: E{|hi|2} Ωi

The channel is assumed to be block fading, wherein the
channel stays constant for a coherence time interval and then
changes to another random realization with distribution as in
(2). During each coherence time interval, the pilot sequence is
re-transmitted ⌈L/K⌉ times to acquire the CSI for L diversity
paths (K ≤ L ≤ N ). Let us define the CSI acquisition set
L ⊆ {1, .., N} as the set of indices of diversity paths whose
CSI is acquired at the RX. Assuming perfect CSI estimation,
it can be shown that the instantaneous SNR for GSC can be
expressed as:

γGSC(L) = max
S⊆L,|S|=K

{
ρ
∑
i∈S

|hi|2
}

(3)

Correspondingly the achievable data rate can be expressed as:

R(L) = (1− ⌈L/K⌉θp)C(L) (4)

where, C(L) = E {log(1 + γGSC(L))} is the ergodic capacity
and θp is the fraction of time-frequency resources consumed
by the pilot sequence.7 From (4), there is a trade-off between
the number of diversity branches used L and the amount of
CSI training required ⌈L/K⌉θp. In this paper we find the CSI
acquisition set Lopt and its size Lopt = |Lopt| that maximizes
the achievable data rate.

III. PROBLEM FORMULATION

Consider the following family of optimization problems for
K ≤ L ≤ N :

L∗(L) = argmax
L⊂{1,..,N}

∣∣|L|=L

R(L) (5)

Then the rate maximizing CSI acquisition set can be expressed
as Lopt = L∗(Lopt), where:

Lopt = argmax
K≤L≤N

{R(L∗(L))} (6)

Theorem III.1. An optimal solution L∗(L) to (5) is given by:

L∗(L) =
{

η1 η2 . . . ηL
}

(7)

6The average path power corresponds to the Power Delay Profile in a UWB
system and the Power Angle Spectrum in a SIMO system

7In general, θp is a function of not only the symbol duration but also of
the number of active TXs with orthogonal pilots (see Sec V).



where η is a permutation of the vector [1, ..., N ] such that
Ωηi ≥ Ωηj for all i ≤ j.8

Proof. Suppose {η1, η2, ..., ηL} is not an optimal solution to
(5). Consider any optimal solution L∗(L) ̸= {η1, η2, ..., ηL}.
Then there exist distinct numbers a1, ..ap, b1, .., bp (1 ≤
a1, ..ap ≤ L < b1, .., bp ≤ N ) such that:(

L∗(L) ∪ {ηa1 , ..ηap}
)
\{ηb1 , .., ηbp} = {η1, ..., ηL}

Note that, from the definition of η, we have Ωηaj
≥ Ωηbj

for
all 1 ≤ j ≤ p. From (3), we then have:

γGSC(L∗(L)) = max
S⊆L∗(L),|S|=K

{
ρ
∑
i∈S

|hi|2
}

≤ max
S⊆L∗(L),|S|=K

{
ρ
∑
i∈S

αi|hi|2
}

(8)

where, we define constants:

αi =

{ Ωηaj

Ωηbj

for i = ηbj , 1 ≤ j ≤ p

1 otherwise
(9)

It can be easily verified from (2), that
|hηaj

| d
=
√

αηbj
|hηbj

| ∀j, where d
= denotes equality in

distribution. Now since hi are independently distributed for
1 ≤ i ≤ N , from (8) we have:

γGSC({η1, ..., ηL})
d
= max

S⊆L∗(L),|S|=K

{
ρ
∑
i∈S

αi|hi|2
}

⇒ γGSC({η1, ..., ηL})
d
≥ γGSC(L∗(L)) (10)

where
d
≥ represents first order stochastic dominance of the

left hand side over the right hand side. Using (4) and (10) we
further have:

R(L∗(L)) ≤ R({η1, ..., ηL}) (11)

which is in contradiction to our initial assumption. This
concludes the proof.

Though it seems intuitively correct to only acquire the CSI
for the L diversity paths with the highest average power, it
is worth mentioning that Theorem III.1 is non-trivial. For
example, the above does not hold if the shape parameter m
were different for each diversity path.

Since we now know how to find L∗(L), the problem of
finding Lopt is reduced to finding optimal size Lopt in (6).

Theorem III.2. C(L∗(L)) is a non-negative, non-decreasing
and a concave function9 of L i.e.,

∆CL+1 ≤ ∆CL for K ≤ L ≤ N − 1 (12)

where ∆CL , C(L∗(L))− C(L∗(L− 1)).

8A version of this theorem for Rayleigh fading was proved by us in [13]
9By concavity, we mean that the piece-wise linear function obtained by

interpolating C(L∗(L)) for non-integer L is concave

Proof. Since L∗(L) ⊂ L∗(L+1), from (3) and (4), C(L∗(L))
is a non-negative, non-decreasing function of L.

For any L, let us define a new random vector ĥ such that:
ĥηi = hηi for i /∈ {L,L + 1}, ĥηL

d
=hηL but is independent

of h, and ĥηL+1
= hηL

√
ΩηL+1

/
ΩηL

. It can be easily verified

from (2) that ĥ
d
=h. Let |hL

(i)|, |ĥ
L
(i)| represent magnitude of

the i-th largest diversity paths (in magnitude) from the sets
{|hj |

∣∣j ∈ L∗(L)} and {|ĥj |
∣∣j ∈ L∗(L)}, respectively.10 Then

from (3) we have:

γGSC(L∗(L)) =

K∑
i=1

ρ|hL
(i)|

2
(13)

We also define:

∆γGSC(L) , γGSC(L∗(L))− γGSC(L∗(L− 1))

= max{ρ|hL−1
(K) |

2
, ρ|hηL |

2} − ρ|hL−1
(K) |

2
(14)

Now the incremental capacity can be expressed as:

∆CL = C(L∗(L))− C(L∗(L− 1))

= E

{∫ ∆γGSC(L)

0

1

1 + γGSC(L∗(L− 1)) + x
dx

}
(15)

Since ĥ
d
=h, we can also write:

∆CL+1 = E

{∫ ∆γ̂GSC(L+1)

0

1

1 + γ̂GSC(L∗(L)) + x
dx

}
(16)

where γ̂GSC(L∗(L)),∆γ̂GSC(L + 1) are as in (13)–(14) with
terms of h replaced by corresponding terms of ĥ. As L∗(L−
1) ⊂ L∗(L), from the definition of ĥ it can be easily verified
that |ĥL

(K)| ≥ |hL−1
(K) | and γ̂GSC(L∗(L)) ≥ γGSC(L∗(L − 1)),

for all channel realizations. Additionally, using theorem III.1,
ĥηL+1 ≤ hηL and so ∆γ̂GSC(L+1) ≤ ∆γGSC(L). Using these
results and from (15)–(16), the theorem follows.

Since C(L∗(L)) is non-decreasing function of L, from (4)
we have: R(L∗(L)) ≤ R(L∗(K

⌈
L
K

⌉
)) for all K ≤ L ≤ N .

Therefore we can simplify the optimization problem in (6) to:

Lopt = argmax
L∈{K,2K,..,N}

{R(L∗(L))} (17)

For ease of notation, let C(L∗(0)) = C(L∗(N + K)) = 0.
Then any L∗ ∈ {K, 2K, ..,N} is a local maximum of (17)
iff:

R(L∗(L∗ −K)) ≤ R(L∗(L∗)) ≥ R(L∗(L∗ +K))

≡ ∆CK
L∗ ≥ g(L∗) and ∆CK

L∗+K ≤ g(L∗ +K) (18)

where ∆CK
L∗ = C(L∗(L∗))− C(L∗(L∗ −K)) and:

g(L) , C(L∗(L−K))
1
θp

− L
K

(19a)

Since from theorem III.2, ∆CK
L is a non-increasing function

of L and g(L) is a non-decreasing function of L, any locally

10We set |hL
(i)

| = 0 if i > |L∗(L)|



optimum L∗ for (17) is also a globally optimum solution.
Therefore, instead of a brute-force search, we use the follow-
ing linear search algorithm to find Lopt:11

Algorithm 1: Find Lopt

N,K,m, ρ,Ω - inputs
Initialize L = K, C(L∗(0)) = 0;
while L < N do

Compute C(L∗(L));
Compute C(L∗(L+K));
if ∆CK

L ≥ g(L) and ∆CK
L+K ≤ g(L+K) then

return L;
end if
L = L+K;

end while
return N

IV. COMPUTING THE CAPACITIES

In this section, we find a method to calculate C(L∗(L)).
Most of the prior works on the performance analysis of GSC,
rely on finding the moment generating function (MGF) of the
SNR. Finding the MGF is in itself a computationally intensive
exercise involving ≈ K

(
L
K

)
one-dimensional integrals in

general [10]. Therefore techniques to find the capacity from
the MGF such as [17], [18] become computationally infeasible
if K and/or L are large. Instead, in this work we rely on the
upper bound on capacity:

CUB(L) , log(1 + E{γGSC(L)}) ≥ C(L) (20)

to find a near-optimal Lopt in Algorithm 1. It can be easily
verified that Theorems III.1 and III.2 are also applicable if
we replace C(L) by CUB(L). Computing CUB(L) (which is
a function of the mean SNR) is also an involved exercise
involving ≈ K2

(
L
K

)
one-dimensional integrals [10]. Though

some works also find closed form results [7], they involve a
larger number of iterations and thus do not necessarily reduce
the computational complexity. This computational load can
be extremely large especially if K and/or L are large and
therefore alternate approaches are required. Observing that
we know CUB(L∗(L − K)) while finding CUB(L∗(L)) in
Algorithm 1, we can recursively define:

eCUB(L∗(L)) = eCUB(L∗(L−1)) + E{∆γGSC(L)} (21)

Using (14), we can write:

E{∆γGSC(L)} =

∫ ∞

x=0

x2
[
F|hL−1

(K)
|(x)f|hηL

|(x)

−f|hL−1
(K)

|(x)(1− F|hηL
|(x))

]
dx(22)

11Though a binary search for a local optimum may have fewer iterations,
the linear search can be used to recursively compute C(L∗(L)), as shall be
illustrated in section IV

where:

f|hL−1
(K)

|(x) =
∑

b∈P(1:K−1,K+1:L−1)
L−1

f|hbK
|(x)

[
K−1∏
i=1

(
1− F|hbi

|(x)
)]

×

 L−1∏
j=K+1

F|hbj
|(x)

 (23)

F|hL−1
(K)

|(x) =

K−1∑
k=0

∑
b∈P(1:k,k+1:L)

L−1

[
k∏

i=1

(
1− F|hbi

|(x)
)]

×

 L−1∏
j=k+1

F|hbj
|(x)

 (24)

and P(a:b,c:d)
L−1 is set of all permutations of the vector

[η1, .., ηL−1] such that ∀b ∈ P(a:b,c:d)
L−1 , ba < ba+1 < .. < bb

and bc < bc+1 < .. < bd. In general, this recursive
definition does not lead to any significant savings in computing
CUB(L∗(L)). However, in the special case where L∗(L−1) has
independent and identically distributed (i.i.d.) diversity paths,
we have:

f iid
|hL−1

(K)
|(x) = K

(
L− 1

K

)
f|hiid

L−1|
(x)

(
1− F|hiid

L−1|
(x)

)K−1

×
(
F|hiid

L−1|
(x)

)L−K−1

(25)

F iid
|hL−1

(K)
|(x) =

K−1∑
k=0

(
L− 1

k

)(
1− F|hiid

L−1|
(x)

)k

×
(
F|hiid

L−1|
(x)

)L−k−1

(26)

E{γiid
GSC(L∗(L− 1))} =

K∑
k=1

k

(
L− 1

k

)∫ ∞

x=0

[
x2f|hiid

L−1|
(x)

×
(
1− F|hiid

L−1|
(x)

)k−1(
F|hiid

L−1|
(x)

)L−k−1]
dx

(27)

where f|hiid
L−1|

(x) and F|hiid
L−1|

(x) are the marginal PDF and
CDF, respectively, of |hi| ∀i ∈ L∗(L−1). In this special case,
computing CUB(L∗(L)) from CUB(L∗(L − 1)) only involves
computing K one-dimensional integrals.

To reduce the cost of computation in the general i.n.i.d.
case, while computing E{∆γ̃GSC(L)}12 (from (22)), we ap-
proximate L∗(L − 1) to be composed of i.i.d. components.
In other words, we approximate f|hL−1

(K)
|(x) and F|hL−1

(K)
|(x)

by f iid
|hL−1

(K)
|(x) and F iid

|hL−1
(K)

|(x), respectively, where the i.i.d.

spreading parameter Ωiid
L−1 is such that: E{γiid

GSC(L∗(L −
1))} = E{γ̃GSC(L∗(L − 1))}. Note that from (21),
E{γ̃GSC(L∗(L − 1))} is already available when computing
E{∆γ̃GSC(L)}.

12We use X̃ to denote an approximation for X (X = γGSC, CUB)



This procedure is detailed in Algorithm 2 and shall be
referred to as ‘RecursiveIID Approx’. The proposed approx-

Algorithm 2: Compute C̃UB(L∗(L)) recursively12

E{γ̃GSC(L∗(L− 1))}, L,K,m, ρ,ΩηL
- inputs

if L ≤ K then
return
C̃UB(L∗(L)) = log(1 + E{γ̃GSC(L∗(L− 1))}+ ρΩηL)

end if
Find Ωiid

L−1 s.t.

E{γiid
GSC(L∗(L− 1))} = E{γ̃GSC(L∗(L− 1))}

where E{γiid
GSC(L∗(L− 1))} is as defined in (27) and:

f|hiid
L−1|

(x) , 2

Γ(m)

[
m

Ωiid
L−1

]m

x2m−1 exp{− mx2

Ωiid
L−1

}

f|hiid
L−1|

(x) ,
Γlower,inc(m,mx2/Ωiid

L−1)

Γ(m)

{For example, using FSOLVE in MATLAB}
Compute E{∆γ̃GSC(L)} from (22) with
f̃|hL−1

(K)
|(x), F̃|hL−1

(K)
|(x) as given by (25)–(26).

E{γ̃GSC(L∗(L))}=E{γ̃GSC(L∗(L−1))}+E{∆γ̃GSC(L)}
return C̃UB(L∗(L)) = log(1 + E{γ̃GSC(L∗(L))})

imation is accurate when either the spreading parameters Ωi

are equal for some i and negligible for others or are skewed
such that

∑K
i=1 Ωi ≫

∑N
i=K+1 Ωi. A study of the accuracy

of the approximation for several practically relevant power
spectra (Ω) are studied in Fig 1. Here the ergodic capacity
C(L∗(L)) is compared to both the capacity upper bound
CUB(L∗(L)) and the Recursive-IID Approx. C̃UB(L∗(L)) (as
obtained via Algorithm 2). Since the exact computations of
C(L∗(L)), CUB(L∗(L)) are infeasible, we rely on Monte-
Carlo simulations. The results show that Recursive-IID Approx
provides a very good approximation to CUB(L∗(L)). Though
there is a some gap between C(L∗(L)) and C̃UB(L∗(L)), the
gap is more or less constant. As shall be shown in Sec V,
the impact of this gap on Lopt is minimal. Similar results are
observed for other power spectra, barring a few heavy tail
functions like the Zipf probability mass function.

V. SIMULATION RESULTS

For simulations, we consider a system with a single antenna
TX and a low complexity switched RX. We consider two
relevant scenarios: 1) A UWB system with impulse radio
signalling and an S-Rake RX 2) An Orthogonal Frequency
Division Multiplexed SIMO system with a multi-antenna RX.
For finding the pilot overhead, we assume that there are
U such single antenna TXs in the system.13 Orthogonal
pilots are assigned to the TXs to prevent pilot contamination.

12The constant κ is chosen such that
∑N

i=1 Ωi = N
13The U TXs may have dedicated RXs, such as in a peer-to-peer network,

or may have a common RX such as in a multiple access channel.
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Fig. 1. Capacity as a function of L for different diversity power spectra:
(a) Considers an exponential power spectrum Ωi = κ exp{−λi} (b) Con-
siders a Gaussian power spectrum Ωi = κ exp

{
− (i−⌊N/2⌋)2

2σ2

} (
system

parameters: m = 2, N = 24,K = 2, ρ = 1
)

12

The fractional pilot overhead in the two cases is computed
as: θUWB

p ≈ TsymbU
Tcoh

and θMIMO
p ≈ τrmsU

Tcoh
.14 The simulation

parameters are summarized in Table II and are similar to the
parameters in IEEE 802.15.4a PAN (Personal Area Network)
standard [19] and the cellular LTE (Long Term Evolution)
standard [20], respectively.

TABLE II
SIMULATION PARAMETERS

Cellular Layout UWB SIMO
No. of diversity paths (N ) 50 100
No. of down-conversion chains (K) 2 5
Carrier freq 6 GHz 2 GHz
Coherence time (Tcoh) 10 ms 10 ms
Delay spread (τrms) 100 ns 500 ns
Symbol duration (Tsymb) 8µs 100µs
No. of Users (U ) 25 200
Fractional pilot overhead (θp) 0.02 0.01

Assuming that the multiple TXs have orthogonal access in

14This result is obtained considering that we need one pilot per TX in each
coherence time and coherence bandwidth for OFDMA and that the TXs have
orthogonal time access in a UWB Personal Area Network [19].



time, frequency or space (no interference), we can restrict
to a single TX-RX analysis, as is considered in this work.
The achievable rates for the two scenarios as a function of
L is presented in Fig 2. Here, the achievable rate R(L∗(L))
(as obtained via Monte-Carlo simulations) are compared to
the Recursive-IID Approx R̃UB(L∗(L)) (as obtained via Al-
gorithm 2 and (4)). The results suggest that the proposed
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(b) SIMO: m = 1, ρ = 10

Fig. 2. Achievable rate rate as a function of L for two practical scenarios:
(a) A UWB system with Ωi =

∑6
j=1 κ exp{− j

25
− 2i−10j

15
}u[2i − 10j]

(where u[i] = 1 for i ≥ 0 and u[i] = 0 otherwise) (b) Considers a SIMO

system with Ωi = κ
∑20

j=1(j/20)
2 exp

{
[1.8(i−50)−ϕj ]

2

50

} (
where ϕj =

36(−1)j
√

−2 log(j/20)
)
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recursive IID algorithm predicts the value of Lopt very ac-
curately. Also, as expected, Lopt ≪ N and this choice leads
to a significant increase in achievable data rate(≈ 20− 30%).

VI. CONCLUSION

In this paper, we study the trade-off between diversity and
training overhead for low complexity switched transceivers.
We conclude that if the diversity paths have same fading
parameters but different mean powers, it is data rate optimal
to only acquire CSI for a subset of paths (of size L) with the
highest mean powers. Simulation results for some practically
important settings suggest that the optimal choice of L can
improve data rate by a factor of ≈ 20−30%. Under typical sce-
narios Lopt > K, suggesting that with judicious pilot training,

S-Rake outperforms P-Rake [3] and introducing a selection
stage improves performance of MIMO hybrid preprocessing
[1], even after accounting for training overhead.
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