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Abstract—Downlink channel estimation in massive MIMO
systems is well known to generate a large overhead in frequency
division duplex (FDD) mode as the amount of training generally
scales with the number of transmit antennas. Using instead
an extrapolation of the channel from the measured uplink
estimates to the downlink frequency band completely removes
this overhead. In this paper, we investigate the theoretical
limits of channel extrapolation in frequency. We highlight
the advantage of basing the extrapolation on high-resolution
channel estimation. A lower bound (LB) on the mean squared
error (MSE) of the extrapolated channel is derived. A simplified
LB is also proposed, giving physical intuition on the SNR gain
and extrapolation range that can be expected in practice. The
validity of the simplified LB relies on the assumption that the
paths are well separated. The SNR gain then linearly improves
with the number of receive antennas while the extrapolation
performance penalty quadratically scales with the ratio of the
frequency and the training bandwidth. The theoretical LB is
numerically evaluated using a 3GPP channel model and we
show that the LB can be reached by practical high-resolution
parameter extraction algorithms. Our results show that there
are strong limitations on the extrapolation range than can be
expected in SISO systems while much more promising results
can be obtained in the multiple-antenna setting as the paths can
be more easily separated in the delay-angle domain.

Keywords—Channel estimation, extrapolation, FDD massive
MIMO.

I. INTRODUCTION

Knowledge of Channel state information (CSI) at the
transmitter (CSIT) is a fundamental prerequisite for operation
of massive multiple-input-multiple-output (MIMO) commu-
nications systems. A massive MIMO system has a much
larger number of antennas at the base station than the number
of user antennas. This implies that channel estimation is
much less costly in uplink than in the downlink [1]. In time
division duplex (TDD) systems, the base station (BS) can
efficiently perform downlink channel estimation from uplink
pilot transmission from the user equipments (UEs). Indeed,
channel reciprocity holds as long as uplink and downlink
transmission occurs within a coherence time of the channel,
and within the same frequency band. However, in an FDD
scenario, reciprocity cannot be exploited as different bands,
usually separated by more than a coherence bandwidth, are
used in uplink and downlink. On the other hand, estimation
of the channel by downlink pilot transmission and feedback
might result in a large overhead. To solve this dilemma,
channel extrapolation from the uplink to the downlink band
might provide a viable alternative.

Channel extrapolation in frequency was explored in [2],
which suggested estimation of the multipath components

(MPCs) via high-resolution parameter estimation; based
on the MPCs extrapolation over large bandwidths can be
achieved. However, the single-antenna case that was consid-
ered in this paper showed poor performance. Vasisht et al.
introduce a DL channel prediction method, which exploits the
channel reciprocity between uplink and downlink channels to
eliminate the need of UE CSI feedback in FDD systems [3].
In [4], the authors proposed to acquire CSI through uplink
pilots in combination with a limited feedback from down-
link pilots. More recently, [5] considered extrapolation from
uplink pilots using machine learning algorithms. Channel
extrapolation in frequency also presents formal similarities
to extrapolation in time. In contrast to frequency-domain
extrapolation, channel prediction in time has been extensively
investigated in the literature. A comprehensive review can
be found in [6]. In [7], the authors proposed performance
bounds for prediction of MIMO channels in time. They later
extended their study to MIMO-OFDM channel estimation
with interpolation and extrapolation being done both in time
and frequency [8]. The authors make the observation that
MIMO provides much longer prediction lengths than for
SISO systems.

To provide understanding of the promise of low-overhead
FDD massive MIMO systems, this paper investigates the
theoretical performance limits of channel extrapolation in fre-
quency. First, we highlight the advantages of high-resolution
channel estimation with respect to conventional least squares
channel estimation resulting in SNR gain and extrapolation
factor. Secondly, we formulate a theoretical LB on the MSE
of the extrapolated channel, using a similar methodology as
in [8]. The proposed LB differs from [8] as it takes into
account elevation angles and the influence of the training
pulse. Furthermore, a simplified LB is also proposed, giving
more physical intuition on the extrapolation range and the
SNR gain that can be expected in practice. The validity of
the LB relies on the strong assumption that the paths are
“well separated". Thirdly, we analyze the performance of
the theoretical LB by numerical simulations using a 3GPP
channel model and showing that the LB can be reached
by practical high-resolution parameter extraction algorithms.
Our results show the very limited extrapolation range that can
be achieved with SISO systems, while much more promising
results are obtained in the MIMO setting as the paths can be
more easily separated in the delay-angle domain.

Notations: Vectors and matrices are denoted by bold low-
ercase and uppercase letters, respectively. Superscripts ∗, T

and H stand for conjugate, transpose and Hermitian transpose
operators. The symbols ȷ, tr, E, δn, ℑ and ℜ denote the
imaginary unit, trace, expectation, Kronecker delta, imaginary
and real parts, respectively. The operator diag(a) returns a
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Fig. 1: Frequency response of the transmit pulse.

diagonal matrix with entries of vector a on its diagonal.

II. SYSTEM MODEL

We consider FDD massive MIMO scenarios where each
user has a single-antenna and transmits an uplink orthog-
onal training sequence. Thus, the estimation for different
users becomes independent, and in particular the problem
of extrapolating in frequency a SIMO channel. Moreover, to
highlight the gains of antenna arrays, the SISO case is studied
in parallel.

Let us consider the transmission of a baseband equivalent
pulse s(t) a priori known by the receiver. For the sake
of concreteness, we consider in the following s(t) being
a root raised cosine (RRC) pulse with cutoff frequency is
1+β
2T where 0 ≤ β ≤ 1 is the roll-off factor, as depicted

in Fig. 1. Extension to an arbitrary training signal s(t) is
straightforward. We assume that the channel is quasi-static,
i.e., constant for the duration of the transmission. M denotes
the number of antennas of the receive array. We assume
that the propagation channel is composed of L specular
paths, where each path is completely characterized by its
deterministic parameters: complex gain αl = αR

l +ȷαI
l , delay

τl, azimuth angle ϕl and elevation angle θl. Assuming that
the ratio of the dimension of the array to the speed of light
c is much smaller than the inverse of the system bandwidth,
the complex baseband-equivalent of the received signal at
antenna m can be expressed as

rm(t) =

L∑
l=1

αlam(ϕl, θl)s(t− τl) + wm(t), (1)

where wm(t) is complex circularly symmetric white Gaussian
noise and am(ϕl, θl) is the pattern of antenna m evaluated
in the direction (ϕl, θl). At the receiver, the signal at each
antenna is pre-filtered and sampled at rate 1/Ts = K/T
where the integer K is the oversampling factor. The pre-filter
has a unit frequency response in the bandwidth occupied by
the signal of interest, i.e., − 1+β

2T ≤ f ≤ 1+β
2T , and is designed

so that the noise is still white after filtering and sampling,
i.e., E (wm[n]w∗

m′ [n′]) = σ2
wδm−m′δn−n′ . The oversampling

factor K satisfies the relation K ≥ 1 + β, so that the useful

signal is not impacted by aliasing after sampling. Defining
rm[n] , rm(nTs) and wm[n] , wm(nTs), we obtain

rm[n] =

L∑
l=1

αlam(ϕl, θl)s(nTs − τl) + wm[n], (2)

for n = 0, . . . , N−1 with N being the number of observation
samples. The SISO case can be seen as a special case of the
SIMO case where each ray is completely characterized by its
complex gain αl and its delay τl while the information on
the angles of arrival is lost. In the following, the index “m"
will be omitted when the single-antenna case is considered.

III. CHANNEL ESTIMATION

This section first describes the conventional low-
resolution channel estimation technique used in most com-
munication systems. In the light of its limitations, we detail
our motivations for going towards high-resolution channel es-
timation. We define the channel frequency response evaluated
at frequency f and antenna m as

Hm(f) ,
L∑

l=1

αlam(ϕl, θl)e
−ȷ2πfτl . (3)

A. Conventional low-resolution estimation

Taking the discrete-time Fourier transform of the received
signal, we can rewrite (2) in the frequency domain as

Rm(f) = Hm(f)S(f) +Wm(f),

where S(f), Rm(f) and Wm(f) are the discrete-time Fourier
transforms of rm[n], s[n] and wm[n]. Conventional low-
resolution algorithms such as least squares (LS) estimators
perform a simple per-antenna estimation

ĤLS
m (f) =

Rm(f)

S(f)
= Hm(f) +

Wm(f)

S(f)
.

We can easily see that the LS estimator is unbiased and is
only limited by additive noise. Since the noise samples wm[n]
are white and have variance σ2

w, we can write

MSELS(f) , E|ĤLS
m (f)−Hm(f)|2 = σ2

w

N

|S(f)|2
.

Since the transmit signal is a RRC pulse, we can explicitly
write the expression of S(f). Defining s , (s(0), ..., s((N −
1)Ts))

T and SNR , ∥s∥2

σ2
w

, we have

|S(f)|2 =

{
0 if |f | ≥ 1+β

2T

∥s∥2K if |f | ≤ 1−β
2T

MSELS(f) =

{
∞ if |f | ≥ 1+β

2T
1

SNR
N
K if |f | ≤ 1−β

2T

,

where we omitted the transition band 1−β
2T ≤ |f | ≤ 1+β

2T for
the sake of simplicity. We can see that the MSE is infinite
out of the bandwidth of the transmit signal, meaning that
no extrapolation is possible. In practice, the MSE might not
be infinite if simple linear extrapolation methods are used.
However, most of these methods would have a very limited
extrapolation range of the order of the coherence bandwidth
of the channel, which can be related to the inverse of the
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Fig. 2: For a scenario with few well separated rays, high-
resolution channel estimation is preferable as it would have
to estimate only L = 4 coefficients instead of about Ñ ≈ 30
for a low-resolution LS estimator.

maximal delay spread. For a delay spread of 2µs, this would
correspond to only 500kHz extrapolation range.

In the signal band, the MSE of the LS estimator linearly
degrades as a function of the ratio Ñ , N

K = NTs

T . We
can see that Ñ actually corresponds to the number of time
periods T on which the received signal is being observed,
including the delay spread of the channel and the transmit
pulse duration. This can be intuitively seen as the number of
delay coefficients that the LS estimator is trying to estimate.
Indeed, because of its low resolution in time (of the order of
T ), the LS estimator does not resolve the specular paths but
estimates instead its convolution with the transmit pulse, as
shown in Fig. 2. To maximize the estimation performance,
Ñ should be well chosen: big enough so that the observation
window captures the useful training signal while being low
enough just to capture useful signal and not noise. The gain
obtained by limiting the number of coefficients Ñ is similar
to a multicarrier system that would convert its pilot-based
frequency channel estimates to the time domain, truncate
the obtained impulse response to Ñ coefficients and finally
convert it back to frequency [9]. One can note that applying
a LMMSE filter on the LS frequency estimates as in [10]
might improve the performance but would require the a priori
knowledge of channel second order statistics.

B. High-resolution estimation

One could wonder if alternatives to conventional low-
resolution channel estimation are possible. If the channel only
has a few well separated specular multipath components1,
i.e., L << Ñ , an intuitive reasoning suggests to go for
high-resolution estimation of the L different path parameters
directly [2]. There are two main motivations for this: SNR
gain and extrapolation. As will be analytically shown in
Section IV, the SNR gain would come from two sources.

1The “few well separated" assumption will be properly formalized in
Section IV.

First, the receiver only has to estimate L complex coefficients
rather than Ñ , resulting in a potential SNR gain of Ñ

L with
respect to LS estimation. One should note that this gain is
stronger than the potential gain of using a frequency correla-
tion filter as in [10]. It does not come from simply assuming
that the channel impulse response has a finite length ÑT as
in [9] but from its sparsity. Secondly, the received signal at
each antenna can be coherently combined to jointly estimate
and separate all path parameters instead of performing per-
antenna independent channel estimation as in the LS case,
which results in a potential total SNR gain of a factor MÑ

L
with respect to LS estimation. One should here also note that
improved channel estimators making using of correlation in
the spatial domain through the antennas could also achieve
a similar gain. By definition, low-resolution estimators are
restricted to the bandwidth occupied by the training signal.
However, high-resolution estimates of the path parameters
allow for simple channel extrapolation in frequency possibly
very far from the initial band of the training signal. If we
denote by τ̂l, ϕ̂l, θ̂l and α̂l the high-resolution estimates of
τl, ϕl, θl and αl respectively, we can write the expression of
the extrapolated channel as

Ĥm(f, ψ̂) =

L∑
l=1

α̂lam(ϕ̂l, θ̂l)e
−ȷ2πfτ̂l . (4)

Of course, intuitive reasoning tells us that the extrapolated
channel will suffer from the estimation errors on the path
parameters, especially as the extrapolation factor becomes
large. We also assume here that the underlying assumptions
of the model in (1) are still holding, i.e., the inverse of the
extrapolation range is much smaller than the inverse of the
dimension of the array to the speed of light, which implies
that the antenna array response is the same between uplink
and downlink. Furthermore, we assume that the parameters of
the MPCs are independent of frequency. This is well fulfilled
in most practical situations, since the range over which these
parameters change is on the order of 10% of the carrier
frequency, which is much larger than the extrapolation range
we can usually obtain, see Section V.

IV. PERFORMANCE ANALYSIS

To theoretically formalize the two potential gains of high-
resolution channel estimation, we will in a first step derive the
Fisher information matrix of the estimated path parameters.
The second step will consist in deriving a range on the
MSE of the extrapolated channel frequency response. In
a third step, a simplified LB will be proved giving much
more physical intuition. Finally, the previous results will be
particularized to the SISO case.

A. Fisher information matrix

Let us define the vector r ∈ CNM×1 as containing all
received samples for all antennas and observation samples.
We also define the vector ψ ∈ R5L×1 as containing the 5L
real-valued path parameters. Given the independence of the
noise samples, the log-likelihood of vector r becomes

L (r;ψ) =

N−1∑
n=0

M∑
m=1

L (rm[n];ψ) .



The elements of the Fisher information matrix Iψ ∈ R5L×5L

can be obtained from the log-likelihood function as [11]

[Iψ]u,v = −E
(
∂2L (r;ψ)

∂ψu∂ψv

)
(5)

= −
N−1∑
n=0

M∑
m=1

E
(
∂2L (rm[n];ψ)

∂ψu∂ψv

)
,

where the expectation is taken over the noise distribution.
Since the random variable rm[n];ψ follows a circularly
symmetric complex normal distribution with variance σ2

w and
mean µm,n ,

∑L
l=1 αlam(ϕl, θl)s(nTs − τl), equation (5)

can be rewritten as

[Iψ]u,v =
2

σ2
w

N−1∑
n=0

M∑
m=1

ℜ
{
∂µ∗

m,n

∂ψu

∂µm,n

∂ψv

}
, (6)

for u = 1, ..., 5L, v = 1, ..., 5L. Separating the different path
parameters in vector ψ, we can partition the full 5L × 5L
Fisher information matrix in 25 submatrices, each of dimen-
sion L× L, as

Iψ =
2

σ2
w


Iττ Iτϕ Iτθ IταR IταI

ITτϕ Iϕϕ Iϕθ IϕαR IϕαI

ITτθ ITϕθ Iθθ IθαR IθαI

ITταR ITϕαR ITθαR IαRαR IαRαI

ITταI ITϕαI ITθαI ITαRαI IαIαI

 . (7)

Defining ṡ(t) , ds(t)
dt , ȧm,ϕ(ϕ, θ) , dam(ϕ,θ)

dϕ and
ȧm,θ(ϕ, θ) , dam(ϕ,θ)

dθ , we can write the partial derivatives
appearing in (6).For a specific array pattern am(ϕ, θ), the
Fisher information matrix in (7) can be easily constructed. In
the following, we will make the following assumption.

(As1): the Fisher information matrix Iψ is nonsingular.

In practice, a rank deficiency of Iψ could arise if two
rays, or more, become extremely close in delay and angle,
which would cause the determinant of Iψ to go to zero. A
solution in this case can be to replace the two correlated rays
with one ray whose amplitude is the sum of the amplitudes
of the components. It is intuitive that this operation will not
cause a large information loss if the rays are close enough.

B. Lower bound on the MSE of the extrapolated channel

Let us denote by ψ̂ ∈ R5L×1 an unbiased estimator of ψ
with covariance matrix

Cψ̂ = E
((
ψ − ψ̂

)(
ψ − ψ̂

)T
)
,

where the expectation is taken over the noise distribution.
The Cramer-Rao lower bound (CRLB) tells us that the
matrix Cψ̂ − I−1

ψ is positive semidefinite, which implies that
gHCψ̂g ≥ gHI−1

ψ g for every vector g ∈ C5L×1. If vector g
is chosen as an all zero vector except a one at u-th entry, we
get a LB for the variance of the estimated parameter ψu. The
CRLB only provides a LB on the variance of the estimated
parameters while we are interested on the variance on the
error of the extrapolated channel, which we define as

MSEm(f, ψ̂) , E
∣∣∣Ĥm(f, ψ̂)−Hm(f)

∣∣∣2.

To obtain a performance limit, we would like to lower bound
the MSE by a certain quantity LBm(f, ψ̂) so that

MSEm(f, ψ̂) ≥ LBm(f,ψ),

where LBm(f,ψ) would only depend on deterministic pa-
rameters. The following theorem gives a closed-form expres-
sion of the LB on the extrapolated channel as a function of
the path parameters ψ and the extrapolated frequency f .

Theorem 1. Under (As1), the LB on the MSE of the
extrapolation error LBm(f,ψ) for any unbiased estimator
Ĥm(f,ψ) can be expressed as

LBm(f,ψ) , gH
m,f,ψI

−1
ψ gm,f,ψ,

where we defined the vectors

gT
m,f,ψ ,

(
gT
m,f,τ gT

m,f,ϕ gT
m,f,θ gT

m,f,αR gT
m,f,αI

)
gm,f,τ , −ȷ2πfDαDτ (am(ϕ1, θ1) . . . am(ϕL, θL))

T

gm,f,ϕ , DαDτ (ȧm,ϕ(ϕ1, θ1) . . . ȧm,ϕ(ϕL, θL))
T

gm,f,θ , DαDτ (ȧm,θ(θ1, θ1) . . . ȧm,θ(ϕL, θL))
T

gm,f,αR , Dτ (am(ϕ1, θ1) . . . am(ϕL, θL))
T

gm,f,αI , ȷDτ (am(ϕ1, θ1) . . . am(ϕL, θL))
T
,

with Dτ , diag(e−ȷ2πfτ1 , ..., e−ȷ2πfτL) and Dα ,
diag(α1, ..., αL).

Proof: The proof relies on the application of the CRLB
for transformation of parameters [11]. Due to space con-
straints, we refer to the journal version [12] for the full proof.

C. Separated rays

The LB of Theorem 1 is interesting and is in closed-form,
which allows to easily evaluate it numerically. However,
it requires the inversion of the Fisher information matrix
and does not provide much intuition on the exact SNR
gain and extrapolation factor that we can expect. To further
characterize and try to get more insight on LBm(f,ψ), let
us first define the following vectors in order to introduce
assumptions (As2)− (As3)

sl , (s(−τl) . . . s((N − 1)Ts − τl))
T ∈ CN×1

ṡl , (ṡ(−τl) . . . ṡ((N − 1)Ts − τl))
T ∈ CN×1

al , (a1(ϕl, θl) . . . aM (ϕl, θl))
T ∈ CM×1

ȧl,ϕ , (ȧ1,ϕ(ϕl, θl) . . . ȧM,ϕ(ϕl, θl))
T ∈ CM×1

ȧl,θ , (ȧ1,θ(ϕl, θl) . . . ȧM,θ(ϕl, θl))
T ∈ CM×1.

(As2): separation of the L specular rays in delay, azimuth
angle and/or elevation angle. We assume that, for each pair
of rays l, l′ (l ̸= l′), at least one of the following two
relationships is verified:

(1) Separation in delay:

sHl sl′ = ṡHl ṡl′ = ṡHl sl′ = 0. (8)

(2) Separation in azimuth and/or elevation angle:

aHl al′ = ȧHl,θȧl′,θ = ȧHl,ϕȧl′,ϕ = 0

ȧHl,θal′ = ȧHl,ϕal′ = ȧHl,ϕȧl′,θ = 0.



The assumption (As2) is a strong assumption, whose
accuracy will typically depend on different parameters. The
specular paths will generally become more separated in delay
as the bandwidth of s(t) increases, inducing higher resolution
in time. Similarly, the separation in azimuth and elevation
will be improved as the number of antenna elements M is
increased. More generally, the validity of (As2) will depend
on the pulse shape s(t) and the array pattern am(ϕ, θ).

(As3): the array pattern fulfills the following condition
related to its spatial geometry

ȧHl,ϕal = ȧHl,θal = 0.

The symmetric condition on the array pattern is generally
satisfied for symmetric arrays. For instance, it is easy to
check that the condition is fulfilled if each antenna element
has an isotropic pattern. The following corollary gives a
particularization of the LB of Theorem 1 under additional
assumptions (As2)− (As3) and for the MSE averaged over
the receive antennas, i.e.,

MSE(f, ψ̂) , 1

M

M∑
m=1

MSEm(f, ψ̂).

Corollary 1. Under (As2)−(As3), the expression of the LB
of Theorem 1 averaged over the receive antennas simplifies
to

LB(f,ψ) , 1

M

M∑
m=1

LBm(f,ψ)

=
1

SNR

L

M︸︷︷︸
SNR gain

( 2︸︷︷︸
Loss factor

+
1

2

(
f

σF

)2

︸ ︷︷ ︸
Extrapolation factor

),

where σ2
F is the mean squared bandwidth of the transmit

signal

σ2
F , ∥ṡl∥2

(2π)2∥sl∥2
=

∫
f
f2|S(f)|2df∫
f
|S(f)|2df

.

Proof: Due to space constraints, we refer to the journal
version [12] for the full proof.

By adding some assumptions, the LB proposed in The-
orem 1 can be greatly simplified and Corollary 1 provides
much insight into the physical meaning of the different terms
of the LB. We can clearly identify the two main advantages
of high-resolution channel estimation. As expected, a SNR
gain of a factor MÑ

L can be observed with respect to LS
estimation. This gain comes from two contributions: the array
gain M and the fact that we estimate only L channel paths
instead of Ñ in the LS case. However, a loss factor of
2 appears, coming from the penalty of estimating the real
and imaginary gains, the azimuth and the elevations angles
of each path. Secondly, the channel can be extrapolated in
frequency at the cost of a MSE penalty that quadratically
scales with the ratio f/σF where the denominator indicates
that the extrapolation factor can be quantified in multiples of
the signal bandwidth.

Furthermore, it is interesting to see that the dependence
of LB(f,ψ) on the path parameters ψ vanish under (As2)−

(As3). This is in part explained by the fact that each path is
well separated, which cancels the interdependence between
the paths paramters in the expression of the LB. Additionally,
the channel frequency response is evaluated in the direction of
the incoming specular plane waves, canceling the dependence
in the parameters of each path.

D. Single-input-single-output

The specialization of the above results to the SISO case
is straightforward. As the angles of arrival are not resolved,
the Fisher information matrix, denoted by Iψ,SISO, becomes
a 3L × 3L matrix. To simplify the LB, we introduce the
following adaptation of (As2) to the SISO case:

(As2′): separation of the L specular rays in delay. We
assume that, for each pair of rays l, l′ (l ̸= l′), the condition
(8) is verified.

Corollary 2. Under (As1), the LB on the SISO channel
extrapolation error for any unbiased estimator Ĥ(f, ψ̂) is

LBSISO(f,ψ) , gH
f,ψI

−1
ψ,SISOgf,ψ,

where

gT
f,ψ ,

(
gT
f,τ gT

f,αR gT
f,αI

)
gf,τ , −ȷ2πfDα

(
e−ȷ2πfτ1 . . . e−ȷ2πfτL

)T
gf,αR ,

(
e−ȷ2πfτ1 . . . e−ȷ2πfτL

)T
gf,αI , ȷ

(
e−ȷ2πfτ1 . . . e−ȷ2πfτL

)T
.

Under (As2′), the LB simplifies to

LBSISO(f,ψ) =
L

SNR︸ ︷︷ ︸
SNR gain

( 1︸︷︷︸
Loss factor

+
1

2

(
f

σF

)2

︸ ︷︷ ︸
Extrapolation factor

).

Proof: The proof follows the same methodology as in
Theorem 1 and Corollary 1 applied to the SISO case.

As could be expected, the only SNR gain now comes from
estimating L coefficients rather than Ñ . The extrapolation
factor is the same as in the SIMO case. One can note that
the loss factor is only one versus two in the SIMO case as the
azimuth and elevation angles of each path are not estimated.
The main difference of the SISO case with the SIMO case
is the fact that far fewer observations of the channel are
available, especially compared to a massive MIMO scenario
with a large M . This not only eliminates the array gain but
also makes Iψ,SISO more ill-conditioned as the rays can only
be separated in the delay domain. As a result, (As2′) is a
stronger assumption than (As2) and might only be valid for
a small number of rays L and/or a very large bandwidth.
These observations tend to strongly limit the potential gains
of high-resolution channel estimation in SISO systems [2].

V. NUMERICAL VALIDATION

This section aims at assessing the accuracy of the theo-
retical LB of the extrapolated channel through simulations.
In the simulations, we used a RRC pulse shape s(t) with
roll-off factor β = 0.2. The center frequency is set to 3.5
GHz. We consider a rectangular planar array of antennas at
receive side with an inter-antenna element spacing of λc/2.



−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

1

2

3

Azimuth φ [rad]

E
le
va
ti
on

θ
[r
ad
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·10−6

0

5 · 10−2

0.1

0.15

Delay [s]

G
ai
n
[l
in
ea
r]

Fig. 3: Generated set of parameters (αl, τl, ϕl, θl) for l =
1, ..., L−1 with L = 21 and following 3GPP 3D-UMa NLOS
model. The sum of gains is normalized to one.
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Fig. 4: The SAGE algorithm can reach the performance of the full
LB (Theor. 1). The simplified LB (Corol. 1) gets closer to the full
LB as the number of antenna increases meaning that the rays are
more separated in angle ((As2)).

The antenna elements have an isotropic pattern. The SISO
performance will also be considered according to the descrip-
tion in previous sections. Conventional LS estimation will
be considered as a benchmark. For extracting the MPC, we
use the SAGE algorithm presented in [13] straightforwardly
extended to extract elevation angles. The performance of the
algorithm was averaged over multiple noise realizations.

The MPC parameters were generated by the QuaDRiGa
toolbox [14] according to the 3D-UMa NLOS model defined
by 3GPP TR 36.873 v12.5.0 specifications [15]. The same set
of parameters was used for all simulations and is depicted
in Fig. 3. One can see that some rays are very closely
spaced in delay and angle. Three rectangular array geometries
are considered: M = 8 (4 Horiz. × 2 Vert.), M = 32
(8 Horiz. × 4 Vert.) and M = 128 (16 Horiz. × 8 Vert.).
Different values of the bandwidth, defined as 1/T ,2 are
considered as well. The performance in the figures is shown

2Note that, due to the roll-off factor, the exact bandwidth is actually 1+β
T

.

as a function of frequency normalized in the signal bandwidth
1/T , as we expect form Corollary 1 that extrapolation scales
accordingly. In the legend of the figures, the full LB refers
to the LB of Theorem 1 averaged over the receive antennas
and the simplified LB refers to the expression of Corollary 1
if the rays are well separated. In the SISO case, the full and
simplified LB curves refer to the corresponding expressions
in Corollary 2.

A. SAGE performance versus theoretical LB

Fig. 4 shows the LBs of Theorem 1, Corollary 1 and
Corollary 2, the LS and SAGE estimation performance for
the SISO, M = 8 and M = 32 cases. The first important
point to notice is that SAGE can reach the performance of
the full LB. This implies that the LB gives a good indicator
of the achievable MSE. For the sake of clarity, we will
omit SAGE performance in the next figures. Furthermore,
the simplified LB gets closer to the full LB as the number
of antenna increases meaning that (As2) is better verified:
the rays are more separated in angle. The validity of (As2)
will be studied in the following figures. In the SISO case,
(As2′) is not at all valid and no extrapolation is possible.
This will be studied in the following as well. As expected
from the discussions of previous sections, the high-resolution
channel estimators experience a large SNR gain with respect
to conventional LS estimation and this gain scales with the
number of antennas M .

B. Influence of the bandwidth

1) SISO: Fig. 5 (a) plots the evolution of the full LB as a
function of the signal bandwidth for a SISO system. As the
bandwidth of the system increases, the SISO system has a
larger resolution in time and it can progressively resolve the
different MPC. As the bandwidth increases, (As2′) becomes
more valid and the full LB converges to the simplified LB.
The gap between the full and simplified LB can be seen as
an indicator of the separability of the MPC. As opposed to
high-resolution channel estimation, increasing the bandwidth
is detrimental to conventional LS estimation as the number of
time domain coefficients to estimate becomes larger. Another
way to view this is that the energy is more spread out in
frequency and leads to a lower per-frequency bin SNR. We
can conclude that the price to pay for channel extrapolation
in SISO is to have a very large bandwidth at disposal
and/or a channel that exhibits few well separated MPC.
This observations tends to strongly limit the applicability of
extrapolation for conventional SISO communication systems.

2) SIMO: The same type of remarks can be made for
Fig. 5 (b) which depicts the performance of a M = 32
SIMO system for different bandwidths. As the bandwidth
increases, assumption (As2) becomes more valid and the
full LB converges to the simplified LB. The main difference
with the SISO case is that the extrapolation becomes possible
for much smaller bandwidth. This is explained by the fact
that the rays can now be separated in the delay-angle domain
and not only the delay domain. In the end, we see that a 20
MHz SIMO system with M = 32 antennas can reach the
same extrapolation factor as a 800 MHz SISO system, with
an additional SNR gain of M/2 = 16 ≈12 dB.
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Fig. 5: Impact of the bandwidth and number of antennas on the extrapolation performance. As bandwidth increases, the full LB converges
to the simplified LB meaning that (As2) holds. For increasing number of antennas, the maximal extrapolation range can be reached for
much smaller bandwidth while achieving an additional SNR gain.

C. Influence of the number of antennas

Fig. 5 (c) depicts the performance of the system for a fixed
bandwidth of 1/T = 20 MHz as a function of the number
of antennas. The same effect previously described occurs,
i.e., as the number of antennas increases, the resolution in
the angle domain increases and (As2) is more valid, the full
LB converges to the simplified LB. These observations imply
that the separability of the rays can be achieved by trading
bandwidth against number of antennas.

VI. CONCLUSION

This paper investigated the theoretical performance limits
of channel extrapolation in frequency, seen as a potential
solution to completely remove the pilot overhead for down-
link channel estimation in FDD massive MIMO systems.
We highlighted the advantages of basing the extrapolation
on high-resolution channel estimation as compared to con-
ventional estimators. A LB on the MSE of the extrapolated
channel was proposed. By assuming that the rays are well
separated, we were able to simplify the LB and directly
identify the potential extrapolation range and SNR gain. It
was shown that the SNR gain linearly scales with the number
of receive antennas while the extrapolation performance
penalty quadratically scales with the ratio of the frequency
and the training bandwidth. From simulations using practical
channel models, we saw that the derived LB can be reached
with practical high resolution algorithms. Furthermore, the
extrapolation range is very limited in SISO while much more
promising results were obtained in SIMO as the paths can be
separated in the delay-angle domain. Future works include
validation of theoretical results by channel measurements and
study of potential limiting factors such as channel modeling
and calibration errors.
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