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Abstract— We consider relay cooperation with imperfect chan-
nel state information (CSI) in the downlink of wireless networks.
In particular, we consider a two-phase transmission where in the
first phase the base station broadcasts information to the relays;
the relays decode the data fully or partially depending on the
transmission rate and the quality of their corresponding com-
munication links. During the second phase, the relays cooperate
by jointly beamforming information to multiple users given that
channel mean and covariance are available at the transmitter
side. The goal is to optimize the total network throughput (taking
into account both transmission phases) by proper choice of the
transmission rates, cooperation architecture and beamforming
transmit vectors from the relays. The key contribution of this
paper lies in the consideration of the impact of CSI imperfections
in such a system. We first formulate the problem of finding the
optimum throughput, which is not amenable to analytical solu-
tion. We therefore derive a suboptimum adaptive beamforming
strategy that maximizes a derived upper bound on the average
system throughput. Even though the relays have imperfect CSI,
it is shown that relay cooperation can significantly improve the
overall system throughput.

I. INTRODUCTION

Relays have recently drawn great attention as a means for
improving the range and spectral efficiency of cellular com-
munications systems. They are of interest from a theoretical
point of view [1], [2] and because of their use in standardized
systems like the Wimax (802.16j) standard [3].

The performance of relay systems can be further improved
by cooperation. Most of the literature on cooperative relays
has focused on multiple relays cooperating to reach a single
user or on one relay reaching multiple users [4], [5]. However,
higher gains can be achieved if relays cooperate with each
other for reaching multiple users.

In a recent paper [6], some of us investigated two-phase
relay cooperation where in the first phase the base station
(BS) broadcasts messages intended for different users to the
relays. In a second phase the relays perform joint beamforming
(linear precoding) in order to forward the information. It was
shown that the overall system throughput can be significantly
improved. However, this investigation assumed that the relays
had perfect channel state information (CSI) for the links from
the relays to the mobile stations (MSs), which is not easy to
achieve in practice.
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Imperfections in channel knowledge at the transmit nodes
arise from imperfect feedback, delay and latency, fast changing
channels due to mobility, etc. [7]. Imperfect transmit CSI,
i.e., knowledge about the CSI statistics only, has been consid-
ered in the literature in the context of point-to-point MIMO
channels as well as MIMO broadcast channels (MIMO BC).
Reflecting different amounts of channel knowledge, models
assume knowledge of Channel Mean Information (CMI),
Channel Covariance Information (CCI) and Random Vector
Quantization (RVQ) [8]–[10].

The key contribution of our paper (and the key difference
from [6]) is an investigation of the impact of such imperfect
transmit CSI on two-phase cooperative relay schemes. Under
this assumption, we propose an adaptive beamforming strategy
that maximizes an upper bound on the overall system through-
put by proper choice of transmit rates and cooperation archi-
tectures throughout the different phases of transmission. Our
approach involves two major steps: First we derive an upper
bound (UB) on the overall system throughput. The derived UB
is a function of the expected transmission rates for phases 1
and 2. Second, we derive an upper bound on the expected
transmission rates of phase 2 for general linear precoding
strategies to further upper bound the derived total throughput
expression. Our strategy is to select the scheme that maximizes
the total UB from a set of candidate strategies. Even though
suboptimal, it is shown that this strategy can improve the over-
all system throughput compared to non-cooperative schemes,
and, as a matter of fact, gives a throughput that is fairly close to
the optimum (genie-aided) throughput. We also emphasize the
importance of asymmetric cooperation schemes, i.e., situations
in which not all relays decode the signals intended for all users.
While such asymmetric schemes were shown to be highly
beneficial for the perfect CSI case in [6], it is remarkable that
they retain their advantages for the imperfect CSI case.

The rest of the paper is organized as follows. In Section
II we describe the problem setup and the fundamentals of
asymmetric relay cooperation. We describe our proposed co-
operative strategy in Section III. We also provide two upper
bounds on the overall system throughput and the transmission
rates of the second transmission phase for the considered
configuration. Simulation results are presented in Section
IV. Finally, conclusions are provided in Section V. We use
the following notation: matrices and vectors are denoted by
bold upper- and lower-case letters, respectively. Superscript T
denotes transposition; superscript H Hermitian transposition;
* complex conjugation; tr(A) is the trace of a matrix A.
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II. SYSTEM DESCRIPTION AND PROBLEM SETUP

Figure 1 shows the fundamental setup we consider. Relays
receive data intended for different users from channels charac-
terized by a channel matrix G whose entries are the complex
amplitude gains from the BS antennas to the relay antennas.
Depending on the transmission rates, transmission durations
of the different messages and the channel matrix G, some or
all relays can decode the different messages. Decoded data are
then transmitted to multiple users through joint beamforming
(linear precoding) from the relays. For simplicity of exposition
we assume single-antenna transmitters and receivers, 2 relays
and 2 mobile stations. Extensions to multiple antenna systems
as well as larger number of users is straightforward.

Let H = [h1 h2]T be the channel matrix between the relays
and the users, where hi denotes the channel vector from the
relays to the i-th user. The received signal yi at MS i can be
written as:

yi = hi
T x + w (1)

where x is a vector containing the transmit signals of the
relays, and w is unit variance complex circularly symmetric
AWGN, i.e. w ∼ CN(0, 1). In this work we consider lin-
ear precoding at the relay terminals so that the transmitted
signal x =

∑
i Tibi, where Ti represents the beamforming

vector and bi the message intended for user i, respectively.
We assume that the transmitted signal has to satisfy a total
power constraint P , thus tr(TTH) = P , where T is the
beamforming matrix T = [T1 T2].

As mentioned in the introduction, the key difference be-
tween [6] and the current paper is that [6] assumed that both
BS and relays had full knowledge of the BS-to-relays and
relays-to-mobiles channels. In the current paper, we assume
full channel state information at the receiving nodes (CSIR).
Furthermore, since the channel G is essentially static (relays
are usually fixed)1 we assume that G is perfectly known at
the BS. However, due to high mobility of the MSs, limited
availability of channel feedback and channel fluctuations, the
channel matrix H is usually not fully available at the relays or
the BS and only mean and covariance information is present.
In this paper, the relays-to-mobiles channel is modeled as:

H = H̄ + HW (2)

where HW is a complex white Gaussian random matrix with
zero mean. Hence, H ∼ CN(H̄,Σ), where H̄ and Σ = αI
are the channel mean and covariance matrices, respectively.
This model can account for various situations: outdated CSI,
limited feedback with MMSE estimation at the TX and long
term channel statistics only. Depending on the situation, H̄
and Σ have different interpretations [12]. Note also that for
some interpretations, the channel shows two different types
of randomness: random realizations of the channel, due to

1Changes in the BS-to-relay channel occur only due to movement of
scatterers like cars, leaves, etc. The power of the time-variant components
is typically much smaller than the power in the time-invariant components
[11]

movement of physical objects like scatterers (this changes
on a timescale determined by the Doppler frequency) and
randomness of the CSI, e.g., due to noise, which changes on
a timescale of the pilot symbol intervals. However, for the
mathematical treatment of Sec. III, such a distinction is not
necessary.

Next we describe the transmission strategy in greater detail.
Phase 1: During this phase, the data is transmitted from the BS
to the relays. One or two messages might be transmitted, and
each relay might be able to decode no, one, or all messages
depending on their channel states, the duration of the phase
and the transmission rates. For example, if the transmission
rate for phase 1, R(1), is equal to the capacity of the stronger
relay’s link, then the weaker relay will not be able to decode
the transmitted message. This results in different possible
transmission strategies for phase 1 since different relays can
know certain messages but not others. For more details we
refer the reader to [6]. Note that asymmetry of message
knowledge at the relays, even though suboptimal in the second
transmission phase, can possibly lead to overall-throughput
gains. This is true since, for certain channel conditions (bad
channel from the BS to one of the relays), symmetric knowl-
edge might require such a long phase-1 transmission that the
overall throughput is negatively impacted.
Phase 2: In the second transmission phase, the relays jointly
beamform the decoded data to the MSs. Beamforming is done
based on different message knowledge at the relays. In this
work, we use MMSE beamforming noting that other criteria
could also be used for choosing second-phase transmit vectors
[13]. Note that MSE beamforming in our case is different
from conventional beamforming if relays have asymmetric
message knowledge. We derive MSE beamforming vectors,
with perfect and imperfect CSI, for both symmetric and
asymmetric cooperation architectures in the appendix.

With proper combinations of symmetric/asymmetric and
single/dual messaging, different transmission strategies are
possible. Let S be the set of all available strategies. If we
denote by |S| the cardinality of the set S, then |S| = 8 in
case of a 2-relay, 2-MS system 2.

Let R
(j)
k denote the transmission rate to user k in the j-th

transmission phase, j = 1 . . . 2. Thus, if nk represents the total
number of bits transmitted to the k-th user, then the overall
system throughput, defined as total number of transmitted bits
divided by the total time spent in transmission can be written
as [6]:

th =
n1 + n2

n1

R
(1)
1

+ n2

R
(1)
2

+ max{ n1
log(1+γ1)

, n2
log(1+γ2)

} (3)

where γk represents the receive signal-to-interference-plus-
noise ratio SINR at user k in the second transmission phase.
Obviously, γk and the transmission rates R

(j)
k depend on the

transmission strategy and hence on the beamforming transmit

2Note that if in addition to MSE, we also include other optimization criteria
for the choice of the beamforming matrix T , then |S| > 8.
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Fig. 1: System architecture

vectors. Note also that for a given channel realization, the
throughput is a random variable, where different realizations
correspond to different realizations of the CSI. This is in
contrast to the case of perfect CSI in [6], where the throughput
is a deterministic quantity for a given channel state.

Since the channel matrix H is not fully known to the
transmitting nodes (BS and relays) our goal is to maxi-
mize the expected value of throughput max E[th], where
the maximization is over the choice of nk, R

(j)
k and the

transmission strategy s ∈ S (i.e. single vs dual and symmetry
vs asymmetry) subject to power constraints at the BS and
relays. The expectation is taken w.r.t. to the randomness in
the channel matrix H conditioned on the available channel
statistics. This optimization problem is hard to solve because it
is non-convex. We therefore propose an alternative suboptimal
strategy that examines the set of possible combinations (i.e.
the set S), and picks the best, where “the best” refers to the
strategy that maximizes a derived UB on the expected system
throughput. Hence, the random variations of throughput are
taken into account by optimizing an UB on the expected value
of the system throughput which we derive in the following
section.

III. COOPERATION WITH IMPERFECT CSI

Our proposed optimization strategy selects the transmission
parameters (rates, number of bits, architectures) that maximize
the upper bound on the expected system throughput. We show
that this strategy can provide significant improvements in the
overall system throughput even with imperfect CSI.

A. Upper bound on overall mean system throughput:

Theorem 3.1: For the system shown in Fig. 1 and x =
n1
n2

, an upper bound on the expected system throughput is given
by:

E[th] ≤ x + 1
ax + b + max{ x

E[R
(2)
1 ]

, 1

E[R
(2)
2 ]

} , ∀x (4)

with a and b representing the inverse of transmit rates of phase
1 messages 1 and 2, respectively. E[R(2)

k ], k = 1, 2 denotes
the expected transmission rates for users 1 and 2 in phase 2.

To prove Theorem 3.1 we first observe that the expected
throughput can be written as a convex combination of concave
functions. This is followed by the use of Jensen’s inequality
and careful handling of the derived upper bound for different
values of x. Due to space limitations the details of the proof
are relegated to [13].

Using arguments similar to [6], it is not hard to show that,
in order to maximize the UB, the rates of phase 1, R(1), take
values from the set {0, CBR1 , CBR2} (which determines the
corresponding values for a and b), where CBRi

denotes the
capacity of the link between the BS and relay i. Since the
function above is either concave or convex over the intervals
[0, x∗], [x∗,∞], with x∗ defined as the ratio of the expected

values x∗ = E[R
(2)
1 ]

E[R
(2)
2 ]

, then to maximize the UB we only look

at the set of points x ∈ {0, ∞, x∗}.
The algorithm is summarized as follows:

• Compute the MSE beamforming matrices T for the set
of candidate strategies s ∈ S consisting of symmet-
ric/asymmetric, single/dual messaging according to the
Appendix such that:

1) x = E[R
(2)
1 ]

E[R
(2)
2 ]

for dual messaging

2) x = 0 or ∞ for single user messaging

• The BS chooses the strategy that maximizes an upper
bound on the expected throughput (Eq. 4) from the finite
set S.

Note that we also replace exact values of the expected rates
of phase 2 with corresponding upper bounds in terms of the
mean and covariance; which again leads to an upper bound on
the expected system throughput. Next we provide a derivation
of upper bounds on phase 2 expected transmission rates.

B. Upper bound on phase 2 expected transmission rates
E[R(2)

k ]:

Conditioned on a given channel mean H̄ and a covariance
matrix Σ available at the transmitting nodes (BS and relays)
the expected value of the rate R

(2)
k for user k in the second

transmission phase is:

E[R(2)
k ] = E

[
log

(
1 +

|hH
k Tk(H̄,Σ)|2

1 +
∑

j �=k |hH
k Tj(H̄,Σ)|2

)
|H̄,Σ

]

(5)

where K is the total number of users (here for simplicity
K = 2). This equation assumes “simple” receivers that are
affected by interference in the same way as by noise. To
simplify notation, we drop the conditioning as it should be
clear from the context. Now the expected value of the rate Rk

can be simplified as:

E[Rk] = E
[
log(1 + |hH

k Tk(H̄,Σ)|2 +
∑
j �=k

|hH
k Tj(H̄,Σ)|2)

− log(1 +
∑
j �=k

|hH
k Tj(H̄,Σ)|2)

]
(6)
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Given the channel model in Eq.(2), the first term in the r.h.s.
of Eq.(6) can be simply bounded using Jensen’s inequality as:

Term1 ≤ log
(
1 + TH

k (h̄kh̄H
k + αI)Tk

+
∑
j �=k

TH
j (h̄kh̄H

k + αI)Tj

)
(7)

Next we compute a lower bound on the 2nd term on the
r.h.s. of Eq.(6) :

Term 2 = E[log(1 +
∑
j �=k

|hH
k Tj|2)] = E[log(1 + y)] (8)

Using the Markov inequality,

E[log(1 + y)] ≥ max
a≥0

aPr[y ≥ 2a − 1]

= max
a≥0

a[1 − Fy(2a − 1)] (9)

It is not hard to show that y is the sum of non central χ2
2

RVs with non-centrality parameter s2
j = |h̄H

k Tj|2, where the
variance of the generating Gaussian RVs is σ2 = α

2 Tj
HTj,

that is σ =
√

α
2 tr(TjTj

H).
For the special case where K = 2, the distribution of y is

a chi-square with 2 degrees of freedom, χ2
2, i.e.:

fY (y) =
1

2σ2
e−

s2+y

2σ2 I0

(√
y

s

σ2

)
(10)

where I0(.) is the modified 0-th order Bessel function of the
first kind [14]. Hence the CDF of y is:

FY (y) = 1 − Q1

(
s

σ
,

√
y

σ

)
(11)

where Q1(., .) is the generalized Marcum Q function [14].
Thus, we can lower bound Term 2 as:

E[log(1 + y)]≥max
a>0

a


Q1


 |h̄H

k Tj|√
α
2 tr(TjTj

H)
,

√
2a − 1√

α
2 tr(TjTj

H)






(12)

One could solve for a numerically or alternatively we could
further lower bound the expression above using known bounds
on the Marcum function in [15].
Inserting (7) and (12) into (6) we obtain an UB on the expected
phase-2 transmission rate. This UB, together with Eq. (4),
provides the desired UB on the mean system throughput.

IV. SIMULATIONS

In the following simulations we adopt the CMI model of
[8] with noisy analog feedback. The receivers feedback their
channel vectors through a noisy feedback channel:

HFB =
√

βSNR H + W (13)

where β controls the quality of the feedback channel. Then the
channels are estimated at the transmitters resulting in the CMI
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Fig. 2: Average system throughput with different transmission
methods

model of Eq. (2) with H̄ representing the channel estimate and
α representing the mean square estimation error.

The following figures compare the system throughput of
our UB-based adaptive beamforming with two benchmarking
strategies: The perfect CSIT (the beamforming vectors are
computed based on the true channel realizations and the base
station selects an optimal transmission scheme) and the oracle
selector strategy (only channel statistics are available for com-
puting the beamforming coefficients, but the BS is genie aided
and somehow knows which among the available strategies will
achieve the highest throughput based on the true instantaneous
CSI, not the statistics). The reason we also consider this
oracle strategy is that, even with the statistics based beam-
forming coefficients, maximizing an UB on the average system
throughput does not necessarily mean that the selected strategy
would be the best one to actually use. Thus, this oracle strategy
provides a tighter UB on the achievable system throughput
and hence serves as a benchmarking tool. We also plot (i) the
proposed bound-based adaptive beamforming CMI strategy,
(ii) a strategy that only employs symmetric cooperation (all
messages are known to all relays) and (iii) a non cooperative
round robin transmission scheme which alternates between
users 1 and 2 while selecting the relay with best channel to
the MS. In Fig.2 we compare the achievable throughput of
the different aforementioned strategies. The empirical CDF of
the system throughput of these strategies is plotted in Fig.
3. Figure 5 shows how often single/dual messaging as well as
symmetric/asymmetric cooperation architectures are optimum.
Finally, Fig. 4 demonstrates the effect of feedback quality on
the total system throughput. From these figures we observe
the following:

• Our proposed adaptive technique is able to closely ap-
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proach the performance of the perfect-CSI case3 and
is significantly better than the conventional round-robin
scheme (Fig. 2 and 3).

• As long as the SNR of the CSI is as good as the SNR
of the data (corresponding to β = 1), the impact of
imperfect CSI on the overall throughput is small. This
fact can be used as a guideline to optimize feedback for
given performance guarantees.

• Even though suboptimal for the second phase of trans-
mission, asymmetric cooperation is important from a
total system throughput standpoint. This insight was first

3We would like to point out that, since the choice of the beamforming
vectors here is suboptimally optimized over a finite set, the perfect CSI case
considered here is different from [6] where the beamforming vectors were
chosen from a continuous domain to maximize the total system throughput
expression. More results on closing this gap can be found in [13].
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gained in [6], and it is remarkable that is remains valid
for the imperfect CSI case.

V. SUMMARY AND CONCLUSIONS

In this paper we derived an upper bound on the overall
mean system throughput for a 2-phase transmission system
(BS to relays to users) under the assumption of imperfect
CSI. We used this bound to optimize an adaptive beamforming
strategy that achieves a performance that, under many practical
circumstances, is close to the ideal (perfect-CSI) throughput.

As components of this strategy, we proposed and derived
MMSE beamforming filters for the imperfect CSI case and
for the asymmetric cooperation architecture (see Appendix)
and a transmission strategy that approximately maximizes the
sum throughput of the system.

The results derived in this paper show that relay cooperation
is a useful strategy even if only imperfect CSI is available.
Furthermore, they allow to investigate the impact of the quality
of the feedback channel on the system throughput, and thus
trade off overhead for the feedback channel with throughput
during the actual data transmission.
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APPENDIX

In this appendix we derive the symmetric and asymmetric
MMSE linear precoding vectors for perfect and imperfect CSI.
We assume that the relays can fully cooperate and have perfect
synchronization.
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A. MMSE beamforming, asymmetric, perfect CSI

The goal is to minimize the MSE between the received
users’ signals and the transmitted messages. The result for
the symmetric case is similar to [16]. Here we provide the
analysis for the asymmetric case where we have to add a set
of constraints to force some of the entries of some of the
beamforming vectors to zero. The optimization problem can
be written as:

min
Tj,j=1:K

K∑
j=1

MSEj

s.t. tr

(
K∑

i=1

Ti
HTi

)
= P

and el
T Tj = 0; l ∈ L, j = n + 1 . . . K (14)

where el is binary vector with ones at the entries that are
supposed to be nulled from Tj since the l-th relay does not
have a message to the j-th user. For simplicity let us assume
that whenever this situation arises l is only one index, i.e. only
1 relay does not have a message, i.e. |L| = 1.

Writing the Lagrangian and taking the derivative w.r.t. Tj
∗

we can show that: for a user k receiving data from all relays
(we have n of these) the optimal beamforming vector is given
by:

Tk = (
K∑

i=1

hi
∗hi

T + λ1I)−1hk
∗ (15)

where λ1 is a Lagrangian multiplier chosen to satisfy the total
power constraint. For the users that have entries forced to zero
(message not known at some relay station) the beamforming
vector becomes:

Tj = (
K∑

i=1

hi
∗hi

T + λ1I)−1(hj
∗ − λ∗

je) (16)

where the Lagrange multiplier corresponding to the j-th trans-
mit vector λj has to satisfy:

λj = − (A + λ1I)−1
l hj

∗

(A + λ1I)−1
l,l

(17)

with A =
∑K

i=1 hi
∗hi

T . We solve for λ1 numerically and
refer the reader to [13] for further details.

B. MMSE beamforming, Imperfect CSI

For the CMI case we minimize the expected MSE as
follows:

min EH [MSE] s.t. tr(THT) = P

and el
T Tj = 0 ∀ l ∈ L if L �= Φ (18)

with H ∼ N(H̄,Σ). For the symmetric architecture, the
expected MSE can be written as:

EH [MSE]=tr(2KI) + tr(THE[HHH]T )
− 2Re(tr(E(HT ))) (19)

After writing the Lagrangian and taking the derivative w.r.t.
Tj

∗ we obtain:

Tj =

(
K∑

i=1

h̄i
∗
h̄i

T + λI + KαI

)−1

h̄j
∗

(20)

To satisfy the power constraint we can show that λ is the
solution of the equation:

P =
∑ γj

(γj + λ)2
(21)

where γj , j = 1 . . . M are the eigenvalues of the hermitian
matrix AT =

∑K
i=1 h̄ih̄i

H + KαI
The result can be easily extended to the asymmetric case by

adding the extra zero forcing constraints, for details see [13].
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