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Abstract—This paper proposes a user scheduling and power
allocation method for content delivery in wireless caching helper
networks without any stringent constraint on the interference
model. For supporting delay-sensitive and time-varying user
demands, the actual delivery quantity of the requested content
should be dynamically controlled by advanced scheduling and
power allocation. In addition, it is difficult for a central unit
to control the content delivery due to a lack of knowledge of
the entire time-varying network; therefore, a belief-propagation
(BP)-based algorithm that facilitates distributed decisions on user
scheduling and power allocation at every caching helper is pre-
sented. The proposed delivery scheme maximizes power efficiency
while limiting the average delay of user request satisfactions
by managing interference among users well. Simulation results
show that the proposed scheme provides almost the same delay
performance as the exhaustively found optimal one at the expense
of little power consumption.

I. INTRODUCTION

Increasingly exploding data traffic is caused by a small num-
ber of popular contents being requested at multiple times and
at ultra high rates [1]. Wireless caching has been considered
as a promising technique for supporting the overlapped user
demands by storing popular contents on independent entities,
such as on femto-base stations (BSs) [2], or on user devices
[3] during off-peak hours. Since these entities are close to
end users, transmission delay and redundant backhaul costs
stemming from overlapped requests can be reduced. However,
storage sizes of helpers are limited, caching and delivery of
popular contents are critical issues in this field. The content
caching distributions have been shown to be relatively robust,
i.e., deviations of the actual caching distribution from the
optimum one results in small performance losses [3]. We thus
assume in this paper that the caching distribution is given.

When caching is already conducted, content delivery in
wireless caching networks is fundamentally different from
conventional donwlink communications where a transmitter is
already determined for a given receiver [4]. On the other hand,
in caching networks, users are sufficient to receive contents
from any helper and to be scheduled sporadically if their
requests are being provided well within the delay threshold.
Thus, helper association for the content-requesting user is
important in the delivery phase, which is selection of the best
source node. The traditional method for helper association is
to choose the one whose channel condition is the strongest [5].
Meanwhile, when the identical contents but different qualities
and sizes are stored on different helpers, the authors of [6], [7]
proposed a helper association scheme to maximize the average

quality. However, interference management for multiple active
users is not considered in [5]–[7].

The content delivery policy for supporting multiple active
users at the same time in BS- or helper-assisted caching
networks has been researched; however, hard constraints are
still applied to interference models. Ref. [8] exploits orthog-
onal resources for multiple active users in the same picocell.
Downlink scheduling in HetNets was studied in [9], with the
assumption that interfering BSs transmit peak power. Mean-
while, link scheduling schemes in BS-assisted and device-
to-device (D2D)-assisted caching networks were proposed in
[10] and [11] respectively by managing interference without
any strict constraint on interference models; however, adaptive
power allocations are not considered. For device caching, D2D
link scheduling with the power control in the presence of
interference was investigated in [12]. The scheme proposed
in [12] is a centralized decision process, and it requires all
information of the entire network and channel gains.

Thus, this paper jointly optimizes user scheduling and
power allocation depending on stochastic network states in
a distributed manner. The main contributions are as follows:

• This paper proposes user scheduling and power allocation
policy for content delivery in wireless helper networks,
without any stringent assumption restricting the interfer-
ence model. Different from most of the existing works, it
does not require any clustering with different bandwidth
allocations in order to avoid interference.

• The proposed BP-based algorithm facilitates distributed
decisions on user scheduling and power allocation at
every helper without full knowledge of all channel infor-
mation. Therefore, the proposed delivery scheme is much
applicable to the practical scenario where gathering the
exact information of the time-varying network is difficult.

• An adaptive control of user scheduling and power allo-
cation is designed based on the Lyapunov optimization
theory for satisfying time-varying and delay-sensitive
user demands.

• We perform simulations to verify the proposed link
scheduling and power allocation policy. It is shown that
the proposed scheme provides very similar limits on the
averaged queueing delay as that obtained with the optimal
centralized decision mechanism, at the expense of power
consumption, which is increased by 70%.

The rest of the paper is organized as follows. The wireless



Fig. 1: Caching helper network model

caching network model and user queue model are described in
Section II. The joint optimization problem of user scheduling
and power allocation is formulated in Section III. The BP-
based content delivery policy is proposed in Sections IV.
Simulation results are presented in Section V, and Section
VI concludes this paper.

II. SYSTEM MODEL

A. Wireless Caching Network
A wireless caching helper network is considered, where

there are K helpers and N users, as shown in Fig. 1. Denote
each helper and user by hk ∈ H and xn ∈ X , respectively,
where k ∈ {1, · · · ,K}, n ∈ {1, · · · , N}, H and X represent
the helper set and the user set, respectively. Each helper
has its own coverage, and users are distributed based on
a homogeneous Poisson point process (PPP) with intensity
λ. Suppose that popular contents are already pushed by the
central BS into helpers having the finite storage size. Each
user requests one of the contents in a library F according
to the popularity distribution, e.g., a Zipf distribution, and
helpers can deliver cached contents to users if following two
conditions are satisfied: 1) a content-requesting user is in the
coverage region of given helper, and 2) the content requested
by the user is already cached in given helper. The scheduling
indicator between hk and xn is denoted by zkn ∈ {0, 1},
and zkn = 1 if hk schedules xn for content delivery. We
assume K < N , and users whose desired contents are cached
in their associated helpers are considered only; therefore, every
helper is determined to deliver the content to one of the active
users in its coverage at every time. Denote the user set whose
members can receive the content from hk by Vk, and the helper
set whose members can deliver the content to xn by Jn. In
addition, even though the delivery link can be constructed
within the distance R, interference power among different
BSs’ coverage regions could not be ignored. Therefore, we
define the interference distance di so that when the distance
between hk and xn is smaller than di, hk can interfere with
xn. Then, denote the user set whose members are interfered
from hk by Xk, and the helper set whose members interfere
with xn by Hn. In this paper, a pair of hk and xn is called
as “neighboring” when hk can generate the signal link or the
interference link with xn.

As shown in Fig. 1, coverage regions of helpers are partially
overlapped; therefore, users should choose one of the helpers
that (i) store the requested content and (ii) whose channel
conditions are sufficiently strong for successful content deliv-
ery. Therefore, helper association becomes a user scheduling
problem. The key difference to the standard, well-explored,
link scheduling problem is that each receiver has multiple
possible transmitters from which it can obtain the content.
Here, this paper does not allow broadcasting the content
to multiple users and cooperation among helpers, because
user demands are generated asynchronously in general. Thus,
one-to-one link scheduling is considered only. We consider
discretized time slots, i.e., t ∈ {1, 2 · · · , }, and user scheduling
and power allocation are updated for every slot. Suppose that
every helper has the same power budget of Pmax, and denote
transmit power of hk by qk, satisfying 0 ≤ qk ≤ Pmax.

The Rayleigh fading channel model is assumed, and
the channel gain between hk and xn is described by the
(frequency-flat) transfer function whose amplitude gain is
described by gkn(t) =

√
Dknu(t), where Dkn = 1/dαkn

denotes path gain (the inverse of the path loss). In addition, dkn
and α are the distance between hk and xn and the path loss
exponent, respectively. u(t) is the fast fading component at slot
t having a complex Gaussian distribution, u(t) ∼ CN (0, 1).
Then, the link rate between hk and xn can be written by

Rkn(t) = B log2

(
1 +

∑
hk∈Jn

|gkn|2 · zknqk∑
hi∈Hn

|gin|2
∑
m∈Vi
m 6=n

zikqi + σ2

)
,

(1)
where B is the bandwidth, and σ2 is the noise variance.
Assume that every scheduled user accesses the same band-
width. The data rate of xn is obtained as Rn(zHn ,qHn , t) =∑
hk∈Hn

Rkn(t), where zHn = [zk : hk ∈ Hn] and
qHn = [qk : hk ∈ Hn] are the scheduling indicator and the
power allocation vectors of helpers neighboring to xn. Here,
zk = [zki : xi ∈ Xk]. Since this paper considers one-to-
one scheduling only,

∑
hk∈Jn

zkn ≤ 1 and
∑
xn∈Vk zkn = 1

should be satisfied for all xn ∈ X and hk ∈ H. Note that users
may not be scheduled, i.e.,

∑
hk∈Jn

zkn = 0 is possible.

B. User queue model
Suppose that each content is divided into many chunks,

and xn consecutively receives desired chunks from one helper
in Jn in each slot. Then, user demands, i.e., the number
of chunks requested but not delivered yet, are accumulated
in the user queue. The queue dynamics of xn in each slot
t ∈ {0, 1, · · · } can be represented as Qn(t + 1) = Qn(t) −
µn(t) + an(t), where Qn(t), an(t), and µn(t) stand for the
queue backlog, numbers of newly requested and delivered
chunks, respectively. Here, µn(t) = min{µ̃n(t), Qn(t)} which
is the maximal number of chunks that can be delivered at slot
t. Assume that an(t) is an i.i.d. uniform random variable, i.e.,
an ∼ U(0, amax). The interval of each slot is denoted by τc;
we further assume block fading channel, and channel gains are
static for each slot. Therefore, the departure µn(t) is given by

µn(t) = min

{⌊
τcRn(zHn

,qHn
, t)

S

⌋
, Qn(t)

}
, (2)



where S is the size of a chunk. Since partial chunk transmis-
sion is meaningless, a flooring operation is used in (2).

III. PROBLEM FORMULATION FOR USER SCHEDULING AND
POWER ALLOCATION IN CACHING HELPER NETWORKS

The optimization problem that maximizes the long-term
time-averaged power efficiency, while limiting the time-
averaged service delay, can be formulated as follows:

{z,q} = arg min
zkn,qk,∀hk,∀xn

lim
T→∞

1

T

T∑
t=1

E
[ ∑
hk∈H

qk
∑
xn∈Xk

zkn

]
(3)

s.t. lim
T→∞

1

T

T∑
t=1

E
[ ∑
xn∈X

Qn(t)

]
<∞ (4)∑

hk∈Jn

zkn ≤ 1, ∀xn ∈ X (5)∑
xn∈Vk

zkn = 1, ∀hk ∈ H, (6)

0 ≤ qk ≤ Pmax, ∀hk ∈ H (7)
zkn ∈ {0, 1}, ∀hk ∈ H, ∀xn ∈ X (8)

where z = [zkn : hk ∈ H, xn ∈ Xm], and q = [qk : hk ∈ H].
Specifically, expectations of both (3) and (4) are with respect to
random channel realizations. The constraint (4) pursues strong
stability of the user queueing system, and the one-to-one link
scheduling is guaranteed by (5) and (6).

According to Little’s theorem [13], the averaged queueing
delay is proportional to the average queue length. Based on
the Lyapunov optimization theory, the time-averaged queue
length can be limited; finally, the solution of the problem
(3)–(6) averts excessive accumulation of user demands by
achieving queue stability in (4). In this respect, many delay-
constrained transmission policies which limit the queueing
delay by pursuing the queue stability have been proposed in
[6], [7]. In this paper, simulation results in Section V show
that the queueing delay can be reduced by ensuring (4).

Let Q(t) = [Qn(t) : xn ∈ X ] be the queue backlog
vector at slot t, and define the quadratic Lyapunov function
as L(Q(t)) = 1

2

∑
xn∈X (Qn(t))2. Then, let ∆(Q(t)) =

E[L(Q(t + 1)) − L(Q(t))|Q(t)] be a conditional quadratic
Lyapunov function which is the drift on t, and it can be upper
bounded by

∆(Q(t)) ≤ C − E
[ ∑
xn∈X

Qn(t)(µn(t)− an(t))
∣∣∣Q(t)

]
, (9)

where
1

2
E
[ ∑
xn∈X

(
µn(t)2 + an(t)2

)]
≤ C, (10)

which assumes that arrival and departure process rates are
upper bounded. In order to achieve queue stability in (4), the
dynamic policy is designed by minimizing a upper bound on
drift-plus-penalty [14]:

∆(Q(t)) + V E
[ ∑
hk∈H

qk
∑
xn∈Xk

zkn

]
, (11)

where V is an importance weight for power efficiency. Then,
according to (9), min-drift-plus-penalty algorithm minimizes a
upper bound on drift, i.e.,

V E
[ ∑
hk∈H

qk
∑
xn∈Xk

zkn

]
− E

[ ∑
xn∈X

Qn(t)µn(t)
∣∣∣Q(t)

]
,

(12)
because C is a constant and an(t) for all un ∈ U is not
controllable. Here, the concept of opportunistically minimizing
the expectations is used; therefore, (12) is minimized by the
algorithm that observes the current queue state Q(t), and
determines z and q to minimize

V
∑
hkH

qk
∑
xn∈Xk

zkn −
∑
xn∈X

Qn(t)µn(t). (13)

According to (13), the utility function representing the
negative sign of upper bound on drift-plus-penalty can be
written by

F (z,q, t)

=
∑
xn∈X

Qn(t)µn(zHn
,qHn

, t)− V ·
∑
hk∈H

qk
∑
xn∈Xk

zkn

(14)

=
∑
xn∈X

(
Qn(t)µn(zHn ,qHn , t)− V ·

∑
hk∈Hn

qkzkn

)
(15)

=
∑
xn∈X

f̃n(zHn ,qHn , t). (16)

Then, according to Lyapunov optimization theory [14], the
problem of (3)–(6) can be converted into the min-drift-plus-
penalty problem as follows:

{z?,q?} = arg max
z,q

∑
xn∈X

f̃n(zHn
,qHn

, t) (17)

s.t. (5)− (8). (18)

z? and q? are the optimal user scheduling and power allocation
vectors. The objective function of (17) is not separable because
of interference effects. Therefore, distributed decisions on z?

and q? are difficult to make in this formulation. For simplicity,
notations for the dependency of all parameters on t are omitted
in the remaining sections because user scheduling and power
allocation are determined in every different slot.

Solutions of the problem of (17)–(18) can be obtained
by relaxing the constraints of (5) and (6). First, suppose
that transmit power should be one of L discrete levels, i.e.,
qk ∈ {P1, · · · , PL}, and Pl > 0 for all l ∈ {1, · · · , L}. This is
reasonable because practical power control uses discrete levels.
Second, in order to suggest a distributed delivery scheme, we
consider the probabilistic policy for each hk to determine zk
and qk. In other words, given the probability distribution of zk
and qk, the most probable decisions on user scheduling power
allocation are made by

{z?k, q?k} = arg max
xn∈Xk,l∈{1,··· ,L}

Pr{Eknl}, (19)

where Eknl represents the event that hk schedules xn with



power level Pl, as defined by

Eknl , {zkn = 1,
∑
xi∈Vk
i 6=n

zki = 0, qm = Pl}. (20)

Note that only one user xn can be scheduled by hk, i.e.,
zkn = 1, among users in Vk; therefore, ∪xn∈Vk ∪Ll=1 Eknl
is the entire region of possible decision parameter sets at
hk, and there are L · |Vm| possible decisions. Thus, the goal
of the content delivery scheme in this paper becomes to
find probability distributions of user scheduling and power
allocation at all caching helpers, i.e., p(zk, qk) for all hk ∈ H.

With the above decision process, every helper can schedule
only one user; therefore, the constraint (6) can be removed.
In addition, the constraint (5) can be combined with the
objective function (17) by using the indicator function as given
by fn(zHn ,qHn) = f̃n(zHn ,qHn) · I

(∑
hk∈Hn

zkn ≤ 1
)

.
Finally, the problem of (17)–(18) can be re-written by

p(z,q) = arg max
p(zk,qk)

∑
xn∈X

fn(zHn ,qHn) (21)

s.t. qk ∈ {P1, · · · , PL}, ∀hk ∈ H (22)
zkn ∈ {0, 1}, ∀hk ∈ H, ∀xn ∈ Xk (23)
(19). (24)

The goal of the above problem becomes to find the marginal
probabilities p(zk, qk) for all helpers hk ∈ H, and this goal
can be achieved by using the BP algorithm.

IV. THE BELIEF PROPAGATION ALGORITHM

This section explains how the optimization problem of (21)–
(24) can be solved by using the BP algorithm. The probability
distributions of all possible zk and qk for all hk ∈ H and
xn ∈ X can be defined with a constant δ > 0 as follows:

p(z,q) =
1

Z
exp

(
δF (z,q)

)
=

1

Z

∏
xn∈X

exp
(
δfn(zHn ,qHn)

)
, (25)

where Z is a normalization factor called the partition function
of δ. The goal is to find p(zk, qk) for all hk ∈ H to decide user
scheduling and power allocation at every helper in a distributed
manner. The marginal distribution of p(z,q) with respect
to the decision variables zk and qk, i.e., p(zk, qk), can be
estimated by the BP algorithm. According to a standard result
of large deviations [15], the optimal decisions to maximize the
utility function F (z,q) as δ →∞, are as follows:

lim
δ→∞
{ẑ, q̂} = arg max

z,q
F (z,q). (26)

Therefore, we can estimate the marginal expectations of the
probability distribution p(z,q) for large δ, and hk can make
decisions on user scheduling and power allocation based on
the marginalized p(zk, qk).

A bipartite graph G = (V,E) called the factor graph
is constructed to represent the network topology, where the
vertex set V consists of K helpers and N users as shown in
Fig. 2. Caching helpers are variable nodes and users are factor

Fig. 2: Factor graph consisting of caching helpers and users

nodes in the factor graph. An edge (hk, xn) ∈ E is constructed
if hk ∈ Hn and xn ∈ Xk. Therefore, an edge (hk, xn) ∈ E
implies that hk and xn are neighboring to each other, i.e., hk
can interfere with xn. In the factor graph, only helpers that
store at least one or more contents requested by neighboring
users are considered, as well as only users who can find at
least one or more neighboring helpers storing the requested
content are considered.

In the BP algorithm, variable nodes and factor nodes it-
eratively exchange the belief messages along the edges of
the factor graph. The belief messages of the variable node
representing hk transmitted to and received from neighboring
factor nodes deliver estimates of p(zk, qk). Denote the belief
message delivered from xn to hk at iteration i by pin→k(zk, qk)
and and the reverse message that hk passes to xn is denoted by
pin←k(zk, qk). After exchanging the messages between users
and helpers for some fixed number of iterations, the final
decision is made at each node hk to compute the marginalized
distribution p(zk, qk). The BP algorithm steps are as follows:

1) Initialization: Before beginning iterations, the initial
values of p1n←k(zk, qk) should be given for all hk ∈ H
and xn ∈ X . Suppose that every possible decision on
user scheduling and power allocation at each helper
follows a uniform distribution at i = 1; therefore,
p1n←k(Eknl) = 1

L·|Vk| , for all hk ∈ H, xn ∈ Uk, and
l ∈ {1, · · · , L}.

2) Factor node update: xn (i.e., factor node n) updates the
message pin→k(zk, qk) and send it to hk (i.e., variable
node k), where hk ∈ Hn. xn computes pin→k(zk, qk)
based on the messages received from helpers hm ∈ Hn\
{hk}, i.e., pin←m(zm, qm), as given by

pin→k(zk, qk) = E
[

exp
(
δfn(zHn

,qHn
)
)∣∣∣zk, qk].

(27)
The expectation of (27) is with respect to
pin←m(zm, qm) for all hm ∈ Hn \ {hk}. When
computing (27), there are three different cases to be
considered: 1) hk delivers the content to xn 2) hk
interferes with xn and xn receives the content from
another neighboring helper hj 6= hk, and 3) xn cannot
receive any content from neighboring helpers. Note
that the third case includes both situations where∑
hs∈Hn

zsn = 0 and I
(∑

hk∈Hn
zkn ≤ 1

)
= 0,

representing when xn is not scheduled by any
neighboring helper and when two or more helpers



schedule xn at the same time, respectively.
The event Eknl represents the first case where hk sched-
ules xn with the transmit power Pl, and pin→k(Eknl) is
updated by averaging data rates given by

B log2

(
1 +

|gkn|2 · qk∑
hs∈Hn
s 6=k

|gsn|2
∑
xv∈Vs
v 6=n

zsvqs + σ2

)
,

(28)
with respect to xs and qs for all cs ∈ Hn \ {cm}.
Meanwhile, the event Ekml for all xm ∈ Vk \ {xn}
represents the second case where hk schedules xm with
transmit power Pl and interferes with xn. In this case,
the signal link between xn and another neighboring
helper hj is generated, and pin→k(Ekml) for all xm ∈ Vk
can be computed by averaging data rates given by

B log2

(
1+

∑
hj∈Jn

j 6=k
|gjn|2qj · I

(∑
hj∈Jn

j 6=k
zjn ≤ 1

)
|gkn|2qk +

∑
hs∈Hn
s 6=m,j

|gsn|2
∑

xv∈Vs
v 6=n

zsvqs + σ2

)

(29)
with respect to {zj , qj} and {zs, qs} for all hj ∈ Jn,
j 6= m, and hs ∈ Hn, s 6= m, j.
Lastly, in the third case in which xn cannot receive any
content, zero throughput is achieved at xn.

3) Variable node update: In every iteration, each helper
sends updated messages to its neighboring users after
receiving belief messages from neighboring users.
hk updates the belief message pi+1

n←k(zk, qk) by using
received messages pij→k(zk, qk) for all xj ∈ Xk, j 6= n,
and sends it to factor node xn ∈ Xk as follows:

pi+1
n←k(zk, qk) =

1

Z

∏
xj∈Xk

j 6=n

pij→k(zk, qk). (30)

The updates of belief messages at every factor node and
variable node are iteratively performed.

4) Final solution: After the predetermined I iterations, the
final decisions at every helper hk ∈ H can be made
based on received messages from neighboring users, as
given by

pIk(zk, qk) =
1

Z

∏
xj∈Xk

pIj→k(zk, qk). (31)

Based on pIk(zk, qk) for all hk ∈ H, each helper can
schedule one of neighboring users and determine an appro-
priate power level that gives the largest probability. Note
that the complexity of the BP algorithm is dominated by the
computations required for the expectation step in (27) of factor
node updates and the iteration number I of the BP algorithm.
For each factor node, the BP algorithm has to average the
belief message in (27) for all different power allocations of
interfering caching nodes hk to xn, i.e., hk ∈ Hn. Therefore,
it requires |Hn|(L + 1)|Hn| computations; therefore, total
I ·N · |Hn|(L+ 1)|Hn| computations are required If the slot
duration is determined by the channel coherence time and
longer than the operation time of the BP algorithm depending

TABLE I: System Parameters

Max. power budget (Pmax) 2 W
Max. value of random user demands (amax) 5
Bandwidth (B) 10 MHz
Coherence time (τc) 10 ms
Path loss exponent (α) 3
Noise variance (σ2) 10−8

File size (S) 20 kbits

on its computational complexity, the proposed scheme can be
performed in a real-time manner. Note that caching nodes and
users exchange their belief messages via wireless communi-
cations, and its signaling overhead is assumed to be small
compared to the effort in transmitting the payload.

V. NUMERICAL RESULTS

This section shows how proposed user scheduling and
power allocation scheme achieves limited service delay as
well as high power efficiency by numerical results. In Fig.
1, there are three caching helpers each having a coverage
region with radius R = 100, the locations of the helpers are
[(0, 0), ( 5

3R, 0), ( 5
6R,

5
√
3

6 R)], so that their coverage regions
are partially overlapped. Users are randomly distributed ac-
cording to a homogeneous PPP with the intensity of λ =
0.025 × 10−2. In addition, di = 2R; therefore, the caching
helper can interfere with users outside of its coverage. Other
simulation parameters are listed in Table I. Since we focus on
the delivery phase, assume that content placements in helpers
are already completed. In this paper, the probabilistic caching
policy proposed in [5] is used.

The performance of the proposed user scheduling and power
allocation policy is verified by comparing with the optimal
scheme that is obtained by exhaustive search. This compar-
ison technique exhaustively finds user scheduling and power
allocation that minimizes the upper bound on the drift-plus-
penalty term in (13). It can be considered as the numerically
optimal scheme, and a centralized decision strategy.

The average queue length and the average power consump-
tion versus time are shown in Figs. 3 and 4, respectively. We
can see that the average queue length and power consumption
of the proposed scheme and ‘Exhaustive search’ are clearly
upper bounded, in accordance with Lyapunov theory [14].
In fact, tightness of these upper bounds is not explicitly
ensured by the min-drift-plus-penalty algorithm; nevertheless,
the average queue length of the proposed scheme is almost the
same as that of ‘Exhaustive search’. Therefore, when V = 1,
the proposed scheme can provide an average queueing delay
that is almost the same as the optimal one, at the expense of
40% increased transmit power.

In Figs. 5 and 6, the impact of the system parameter V
on power consumption and the time-average queue length
respectively, is observed. As mentioned in (13), V is an
importance factor for power-efficiency; therefore, as V in-
creases, power consumption decreases and the average queue
length grows. While the average queue lengths do not vary
significantly, power consumption is saved especially for the
proposed scheme. Consequently, the proposed scheme using



Fig. 3: Average and worst queue lengths

Fig. 4: Average power sum

Fig. 5: The effect of V on avg. queue length

V = 5 can consume almost the same power as ‘Exhaustive
search’ while limiting the queueing delay on a similar scale of
‘Exhaustive search’. Note that V is a system parameter, whose
appropriate value has to be found by experiments as well as
which is free to be adjusted by the system designer.

VI. CONCLUDING REMARKS

This paper proposes dynamic and distributed content deliv-
ery in wireless caching helper networks. The joint optimization
problem for user scheduling and power allocation is formu-
lated. Then, the distributed decision process at each helper de-
pending on the probability distributions of user scheduling and
power allocation is presented. These probability distributions
are obtained by constructing the factor graph representing the
caching helper network and using the BP-based user schedul-
ing and power allocation scheme. The numerical results show
that the proposed scheme enables users to pursue high power
efficiency while limiting the average queueing delay.

Fig. 6: The effect of V on avg. transmit power
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