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Abstract—Cooperation between the nodes of wireless multihop
networks can increase communication reliability, reduce pergy
consumption, and decrease latency. The possible improvemts
are even greater when nodes perform mutual information ac-
cumulation. In this paper, we investigate resource allocadn for
unicast and multicast transmission in such networks. Givena
network, a source, and a destination, our objective is to miimize
end-to-end transmission delay under energy and bandwidth
constraints. We provide an algorithm that determines which
nodes should participate in forwarding the message and what
resources (time, energy, bandwidth) should be allocated teach.

Our approach factors into two sub-problems, each of which
can be solved efficiently. For anytransmission order we show that
solving for the optimum resource allocation can be formulaéd
as a linear programming problem. We then show that the trans-
mission order can be improved systematically by swapping raes
based on the solution of the linear program. Solving a sequee
of linear programs leads to a locally optimal solution in a vey
efficient manner. In comparison to the proposed cooperative
routing solution, it is observed that conventional shortes path
multihop routing typically incurs additional delays and energy
expenditures on the order of 70%. Drawing inspiration from
this first, centralized, algorithm, we also present two distibuted
algorithms. These algorithms require only local channel site
information. Simulations indicate that they yield solutions about
two to five percent less efficient than the centralized algotihm.

Index  Terms—cooperative communications, mutual-
information accumulation, networks, rateless codes, reldng,
routing, wireless communications

|I. INTRODUCTION

and media access control (MAC) layer lead to much larger
performance gains; see, e.g., [2]-[7] and referencesithere

At a high level, routing in wireless networks can be broken
down into three distinct sets of issues. The first is the desfg
physical and MAC layer techniques for relaying information
from one set of nodes to the next. The second is resource al-
location, i.e., identifying what system resources (timergy,
bandwidth) should be allocated to each node. The third set
of issues concerns complications such as interferencecleatw
transmitters, mobility of nodes in the network, and chaggin
channel conditions. We consider a simplified model thatds/oi
the third set of issues. We assume channel conditions are
fixed over the duration of communication, and that interfiese
between transmissions can be neglected.

Our focus is on the remaining issues of optimal transmission
of messages through the network. Most prior works that
consider these coupled problems are based on physical layer
techniques that either use virtual beamforming or energy
accumulation. In virtual beamforming, transmitters atjhe
amplitude and phases of signals to interfere construgtivel
at the receiver [8]-[10]. In energy accumulation, multiple
transmissions are combined non-coherently by receiviniggo
through, for example, space-time or repetition coding 411]
[13].

In this paper we consider networks that employtual-
information accumulatiomt the physical layer [14], [15], and
the solution of the associated resource allocation profl&ve
concentrate on the unicast problem where all nodes work to-

Cooperative relaying is one of the most active resear8§ther o get a single message from a single source to a single
areas in wireless communications. The use of relays ledifsStination node, though our framework also encompasses th
to improvements in energy efficiency, due to reduced nod@ulticast problem—a single source and multiple destimatio
to-node distances, and in robustness to fading, due to thae solutions developed herein could find application in sce

increased number of possible transmission paths.
The most basic forms of relaying, as used, for example,

the Zigbee standard [1], route information along a singkh pa

narios where delay and energy consumption are paramount and
ysers are willing to work together. Examples include mijita
or emergency services, wireless sensor networks, or pgssib

forwarding data packets from one node to the next in a mani¥gfuntary social networks. ,
akin to a bucket brigade. More sophisticated methods tha‘(The difference between energy accumulation and mutual

require tight synchronization between nodes at the phlysi¢d
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ormation accumulation is most easily understood by @bns
ering binary signaling over a pair of independent erasuas¢h
nels. Two cooperating transmitters wish to transmit a commo
message to a single destination. If the erasure probabhiliti
are bothp., and both transmitters use the same code, then
each symbol will be erased with probabilipy2. Therefore,

1 — p.2 novel parity symbols are received, on average, per
transmission. If, instead, the two transmitters use diffier
codes, on average(l — p.) novel parity symbols (which
exceedsl — p.?) are received per transmission. The latter
is mutual-information accumulation, while the former is an
example of energy accumulation.

For Gaussian channels (or fading channels with decoder



channel state information (CSl)) at low signal-to-noiseosa from source to destination in the minimum time under sum-
(SNRs), energy accumulation is nearly equivalent to mutuanergy and bandwidth constraintsLhe relays may participate
information accumulation as capacity is approximatelgdin actively in packet transmission or may remain silent for the
in SNR. However, as SNR increases, mutual-information-acaduration of communication, depending on the energy budget
mulation gives better results than either virtual beamfoger and/or system bandwidth budget. Relay nodes operate under
energy accumulation. Mutual information accumulation ban a half-duplex constraint: they can either transmit or nezei
realized through the use of rateless codes, of which Fauntaut cannot do both simultaneously. To simplify analysis we
and Raptor codes [16]-[18] are examples. assume that a node’s only significant energy expendituse lie

The main contributions of the paper are threefold. in transmission; reception, decoding, and re-encodingilent

. First, we present a formulation of the relaying prob™© significant overhead. We note that this assumption can be

lem with mutual-information accumulation where th&€laxed within the framework presented.
objective is to minimize end-to-end delay under various Th€ ith node operates at a fixed transmit power spectral
bandwidth and energy constraints. dgns_lw (PSD)P; (Joules/sec_/Hz), uniform across its trans-

« Second, under the assumption of centrally available CEission band. The propagation channel between each pair of
we detail an iterative optimization method that is base¥des is modeled as frequency-flat and block-fading, wiere t
on solving a sequence of linear programs (LPs). Each Bshere_ncg time of the channel is !arger than any con5|der¢d
optimizes the resource allocation for a given “transmidl@nsmission time of the encodec_i bits. The channel power gai
sion order,” which corresponds to the route taken by tgtween theth and thekth nodes is denotetd; . Under these
message through the network. The resulting allocatiG$SUmptions, the spectral efficiency of data transmissim f
is then used to update the order. The method procedtilei to nodek can be expressed as [21]
itgratively a_md can _finq good routes very gfﬁciently. _ hi w P;W; h; nP.] bits

« Finally, taking inspiration from our centralized solution C; = log, {1+N7W} = log, [H—N—] Hz’ 1)
we provide two distributed algorithms that require only orri 0 ]SecHz
Iocal_ CSI. Simulations §how that the resulting solution@hereNO/z denotes the PSD of the (white) noise process.
require less thah% addmon_al energy_for the same end- |f nodei is allocated the time-bandwidth produtt sec-Hz
to-end delay as the centralized solution. for transmission, the potential information flow from naide

We have found little prior work investigating routing anchodek is A;C; ;. bits. Our first assumption is that nodes use

resource allocation in networks using mutual-informatima codes that are ideal in the sense that they fully capture this
cumulation. In [14], Castura and Mao considered mutupbtential flow, working at the Shannon limit at any rate. Neode
information accumulation for a single-relay network. Maitu are further designed to usadependently generatecodes.
information accumulation is also investigated in a limitegly This choice connects to our second assumption that, without
in [15], but network “flooding” is assumed where all nodeany rate loss, a receiver can combine information flows from
transmit all the time; this is not an optimum way of usingwo or more transmitters. If, for example, a pair of transimgf
energy. Regarding LP-based resource allocation solufioms nodes: and j are allocated time-bandwidth products and
ad-hoc networks, in [11], [12], Maric and Yates posed thd;, respectively, our two assumptions mean that nbdmn
resource allocation and routing problem as an LP, but thecode as long as the mutual information accumulated by node
physical layer technique assumed is energy accumulatiénexceeds the message size, i.e.,

However, the use of mutual information accumulation com-

plicates and strengthens the inter-node dependenciesngnak AiCir+ AjCjk = B. 2)

it much more difficult to attack the optimal transmissio
problem. Another heuristic algorithm for routing with eger
accumulation was proposed by Chen et.al. in [13]. In [19&5‘

nI'he use of independently-generated codes is crucial to the
utual-information accumulation condition reflected in. (2
e samecode were used by each transmitter, the receiver

Zhao and Valenti derived a heuristic algorithm for relayin ould get multiple looks at each codeword symbol. This is

information using hybrid ARQ (automatic repeat requestthw o ; ’
mutual information accumulatioover time In contrast to our energy-accumulation.” By getting looks at different cede

paper, however, Zhao and Valenti assume that when re%?cn?;a:g?esfr%mt t2|e-ffiﬁafgfﬁrgfﬁgnthgf)eégf receiver
nodes transmit simultaneously, they send out the samelsig umd utuali ' 9y

An outline of the paper is as follows. We present the systemThe two.assumptions (.)f ideal codes and mutual-information
model in Sec. Il. We present and discuss illustrative resuﬁccumulatlon from multiple streams can most naturally be

in Sec. lll. The centralized routing and resource aIIocratiorealized (albeit approximately) through the use of “fofun_ita

algorithm, and its constituent parts, are developed in Béc (or rat_eless ) codes [22]. The rate-adaptive hature oﬁtam

In Sec V we describe the two d’istributed algorithms wgodes is an advantage for networks that operate with inatzur

provide details of simulation results in Sec. VI and conelud=S' €timates, or that are unpredictably time-varying.uidio

in Sec. VII. Proofs are provided in the appendix not the emphasis of this paper, using rateless codes wousd th
B P PP ' also significantly improve the robustness of the coopegativ

networks described here. The non-ideal nature of existing

Il. SYSTEM MODEL implementations of fountain codes can be handled within our

) ) o model without undue trouble by incorporating an overhead
We consider a unicast network consisting/éf+ 1 nodes:

the_ sc_)urcg, the destination, andl — 1 relay nodes. The IMultiple messages can be transmitted in parallel over (guaghogonal
objective is to convey a data packet composedBofhbits channels. See the discussion in [15] and [20].
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factor of (1 + ¢) into the right-hand side of (2); see [15] for
further discussion. 2.8f

The network also operates under bandwidth and energ g,4l
constraints. We study the case where these resources &
constrained on a per-node basis, and also the case where
constraints are imposed on the sum allocation across node
Such constraints involve thd; and theA; P, products. Full
details will be provided in Section IV.
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IIl. M OTIVATION
1.4F

Cooperative

In this section we illustrate the improvements made possibl
by combining mutual information accumulation with route op
timization for a simple one-dimensional network. This miode  1; 35 TR 5 )
is amenable to closed-form analysis. We present thesetsesu Transmission powerPWr
prior to their full derivation in Section IV-E, so that readean
develop a sense of the possible improvement before deriFH& =
into the full details of the algorithms and analysis.

The one-dimensional network we consider consist&/of
1 nodes equally-spaced along the line segménD]. The seen by inspecting Fig. 1, the cooperative gain is greater at
source nod@ is located at the origin and the destination nodgigher transmission PSDs.

N is located atD. The channel power gain between two nodes, Note that in this example sinc, = P for all i and the

i < j, is proportional to(d; ;)~* = (N/D)*(i — j) 7. Asis sum-bandwidth is fixed, the energy expended by the cooper-
fU”y developed in Section IV-E, under a system-wide SUNitive and non-cooperative schemesri®Wr and . PWr,
bandwidth constraint¥r, we can analytically solve for the respectively. In this case the ratio /Tac is the same as the
transmission duration. achieved by our cooperative protocolyatio between the energy expended in the cooperative and non

Consider the case whei = P for all 4. In this case the cooperative cases.
cooperative strategy that minimizes the transmissiontdura  while the topology of this example is extremely simple,
7. is for the source (node) to transmit long enough that nodeit jllustrates two important facts. First, the use of mutual
1 can decode the message and then to stop transmitting. At fagrmation accumulation decreases latency and energyeusa
point nodel starts to transmit (since it has received the pack&tkcond, when mutual-information accumulation is used, the
and its connectivityCy > Co . for k > 1 (sinceP; = P for optimal route can be quite different from the optimum muilti-
all i and dy ;< do,x). Thus it is better to allocate the full hop route. These facts are also true for more complicatedi (an

system bandwidth to node rather than reserving some sanore practically relevant) two-dimensional networks.
that node) can continue to transmit. Subsequent transmissions

continue until the next node in the chain decodes. Each-trans
mission is shorter than the previous ones due to the mutual
information already accumulated by nodes further down thewe now consider how to optimize system parameters to
chain during earlier nodes’ transmissions. minimize delay for general networks. In Sec. IV-A we define
For comparison we also solve fat,., the transmission thetransmission ordeand, given a particular order, show that
duration achieved by the best non-cooperative scheme whttre resource allocation problem is an LP. In Sec. IV-B we
mutual-information accumulation is not performed. In thisise the solution of the LP to revise the transmission order to
protocol each node listens only tesengletransmission. Unlike decrease end-to-end delay. Finally, in Sec. IV-C, we ieerat
the cooperative system in which all nodes participate, is thbetween these two sub-problems.
system the optimal route dependsBnWhenP is sufficiently
low, the optimal route is the same as the cooperative one. L )
As P increases, however, some relay nodes are skipped. Aﬁ,d,Problem parametrization and LP-based resource allarati
when P is sufficiently large, the optimal (i.er,. minimizing) Our parametrization of the problem revolves around the
strategy is direct source to destination transmission. transmission order. We define the transmission order by star
The cooperative gain, defined as. /7., is plotted in Fig. 1 ing with any ordering of theV + 1 network nodes where the
for unit-spaced noded) = 100, N = 100, B = 20 nats) as a source node is the first node in the order. The transmission
function of transmission powd?PWr. The curve is piece-wise order is the sub-sequence that starts with the source node,
linear. The non-differentiable break points correspondh® always labeled), and ends with the destination node, always
powers at which the optimal non-cooperative (shortedt)patabeled L where1 < L < N. The transmission order
route changes. For example, for (roughlyX PW+ < 8, all indicates the order in which nodes are allowed to come on-
100 nodes participate, fo8 < PWr < 24, half the nodes line as transmitters. Since each node must decode before it
participate, for24 < PWr < 47, one-third participate, for can transmit, a node’s position in the order puts conssaint
47 < PWr < 78, one-quarter participate and so forth. the mutual information that that node must accumulate from
As N approaches infinity, an@® approaches zero, so thatearlier nodes in the order. As nodés-1, ... N never transmit
the productPN? stays small, we show in Section IV-E that(since they come on-line after the destination decodesy, th
the cooperative gain converges 43/6 ~ 1.64. As can be are not considered part of the transmission order.

1.2f

100

Cooperative gain of the one dimensional network.

IV. CENTRALIZED ALGORITHMS



We denote the time at which nodedecodes the message 3) Sum-bandwidth constrainA sum-bandwidth constraint
asT; whereT, = 0 and T}, is the duration of the source-to-Wr takes the form

destination transmission. Rather than fhiewe find it more j—1
useful to work with inter-node delays\;, whereA; = T; — : A < AWe forall i

L v v i i €{1,2,...,L}. 7
T;_, for 1 < i < L. Message transmission can be thought ; J =S A } ()

of as consisting of. phases. Théth phase is of duratiod\, ) . .
and at theend of the phase the first nodes have all acquired 4) Per-node bandwidth constraintf the system bandwidth

the messag® We refer to each phase as a “time-slot”. TimelS divided into parallel channels, which each can be altedtat
slots are not of pre-set or equal lengths; rather their g2t Most a single transmitter at any given time, we impose

are solved for in the LP stated next. bandwidth constraints on a per-node basis. In this caseads
For a given transmission order we find the resource alloc®. the L constraints in (7) we geL” constraints:
tion minimizing end-to-end delay, ie{0,1,...L—1}
. Ai,j < AJW1 for all ] c {172,,.[/} . (8)
T = ZAi- 3 Regarding the sum-bandwidth constraint, several aspects
i=1 of (7) are worth noting. First, the specific time-bandwidth

We minimize this linear objective function subject to théllocation to each nodeithin each transmission slot need
following constraints: (i)A; > 0 for all 4, (i) node i must Not be specified. Since fading is modeled as block-fading
decode by timeT} = Y°!_, A, (iii) the energy constraint(s), gnd frequency-flat, each transmitter is agnostic as to what i

and (iv) the constraint(s) on the use of time and bandwidd €xact time-bandwidth allocation, i.e., degrees-ekttom
We state constraints (i))—(iv) in turn. are treated like a fluid; only the allocated time-bandwidth

doroduct is important. We assume that each nodes is able to
use optimally whatever region of the spectrum is allocated t
it for transmission.

First, there arel. decoding constraints resulting from th
nodes’ positions in the transmission order

k=1 & Because the degrees-of-freedom are treated as a fluid, the

> > Ai;Cix>B forall ke{1,2,....,L}, (4) optimalsolution under a sum-bandwidth constraint can gwa

i=0 j=i+1 be implemented by scheduling just one node to transmit at any
where given instant. In time sloj we allocate the whole bandwidth

to node: for duration of A; ;/Wr sec. The ordering of
A;j >0 forall ie{0,1,...,L -1}, je{1,2,...,L}. transmissions within a time slot is immaterial since only at
the end of the time slot do we require the next node in the
The 4, ; are the time-bandwidth product (measured for exrder to be able to decode.
ample inseconds x Hz) assigned to théth node in thejth When both sum-energy and sum-bandwidth constraints are
time slot. Recall thaC; ;. is the spectral efficiency (measuredapplied, we have the following theorem, proven in Ap-
say in bits/(seconds x Hz)) of the channel connecting thependix A.
ith transmitter to thé:th receiver. Eq. (4) says that the tota
mutual information flow to theith node in the transmission
order must excee® bits by the end of théth time slot. Only
the firstk — 1 nodes contribute to this sum.

Second, we consider constraints on energy and bandwidthin this setting there is no trade off between energy and delay
We consider here various possibilities for the types of cohe minimum-energy route is identical to the minimum-delay
straints, including botlsum constraints, applied to the sum-route. We give an example in Section VI.
allocation across the network, ametr-nodeconstraints, ap-  Per-node bandwidth and transmission PSD constraints are
plied to nodes individually. useful for modeling ultra-wideband communication systems

1) Sum-energy constrainth sum-energy constraintr is  In ultra-wideband systems, available bandwidth and transm

L1l L power are detgrmined t;y frequeg_cy r?gulators [2_3]. Func?eg
more, constraints on the spreading factor are impose
ZZAiJPi = Z Z AiiPi < B, ®) Jimits on hardware complexFthy as \?vell as requirerﬁents ofy
communications standards [24]. Consequently, a large Bumb
where the equality holds becausk ; = 0 for j < i since of orthogonal channels can be available, with each nodegbein
nodei has not decoded until the end of sloaind therefore able to use exactly one of them.

l'I'heorem 1. Under a sum-bandwidth constraints, if = P
for all 4 then the solution that minimizes delay also minimizes
the sum energy.

i=0 j=1 i=0 j=i+1

can only transmit in slot$+ 1,..., L. 5) Alternate Objective FunctionsThe LP framework can
2) Per-node energy constraintAn energy constraintz; accommodate a number of alternate objective functions. For
applied to node is example, one might minimize the sum-energy
L L-1 L
> AP <E; foral ie€{1,2...,L}. (6) >N AP
i1 i=0 j=i+1

. . - subject to end-to-end delay constrai A; < Tore
2In fact, as will become more clear when we discuss finding test b Ajl ively. f |y if i lﬁil i = Ttot.
transmission order, additional nodes may have alreadydgeccBut the first \ternatively, for example If multiple unicast sessionsre/e
i node are guaranteed to have already decoded. active in parallel, one might be interested in minimizing th



node 1 node 2 node 3 also node L-2 node L

time-bandwidth footprint. If there were many active sessio decodes decodes  decodes decodes  (destination)
such that the interference could be modeled as a constatt lewhe = 0 | L decodes
of additional background noise (“interference averagjntiie ‘ ‘ ‘ Lo S —
techniques developed in this paper could be applied. To min- A, A, t4 A
imize the time-bandwidth footprint of the systems, subject A=0
energy and delay constraints, one would choose the obgectiv
function to be 1L Fig. 2. Intuition behind order-swapping algorithm fdrs = 0.
DD Ay
i=0 j=1

C. Algorithms for route & resource allocation optimization
But, in general, the addition of mterference_ (ever! m.OdeledWe can now state the iterative route optimization algorithm
as noise) would add a term to the denominator inside the
logarithm in (1), meaning that the resulting resource alfiom  Algorithm 1:
problem would not be an LP, and therefore out of the scopel) Start with an initial transmission order.
of techniques considered herein. 2) Use the linear program of Section IV-A to solve for the
Finally, in the place of the unicast setting on which we focus  parameters of the minimum-delay solution.
in this paper, multicasting can also be addressed in therurr 3) Based on Theorem 2 revise the transmission order:

framework by appropriately adjusting the objective fuonoti a) For anyi such thatA; = 0 andA;_; # 0, swap
and constraints. We discuss the multicasting scenariteurt the positions of the two nodes in the order.
in Section IV-D. b) If the nodeL — 1 is swapped with nodd., drop

(the former) nodel. — 1 from the order entirely.
The resulting order contains only — 1 nodes.
4) Repeat steps 2)-3) until an ordering is obtained with an
The use of mutual information accumulation makes the  associated set of parameter$ satisfying A7 > 0 for
optimum transmission order quite different from the non-  all i. At this point terminate the algorithm.
cooperative multi-hop route. Because the accumulationwef m Since the number of constraints in the LP is linear in
tual information by each node extends across many time, slatetwork size, and the swapping algorithm is very simple,
the decoding process can have very high complexity. Thise routing algorithms can usefully be applied to very large
makes it impossible to solve for the best transmission ordestworks. While in general we obtain a local minimum, for
efficiently through dynamic programming. At the same timemall networks (of, e.g.15 nodes, where exhaustive search

since in a network ofV + 1 nodes there ar§ > | % or orderings is feasible) we found that in our simulations we

distinct orderings ¥ 10%3 for N = 50), exhaustive search of almost always reach the global optimum. In addition, a numbe
all orderings quickly exceeds computational capabilities ~ Of differentinitializations can be tried to avoid partiady bad

In this section, we present a theorem that tells us how @Fal minima. . _ . .
improve the transmission order by exploiting the charaster In the following sub-sections we discuss various aspects
tics of the LP solution obtained in Section IV-A. Consider aRf the algorithm in more depth, such as initialization and

arbitrary transmission order. Define characteristics of certain special cases.
1) Initialization: If we initialize Algorithm 1 with an

X" =[A],. AL AG L AS LAYy, AL ] (9)  arbitrary transmission order at the target energy coms(sji
we typically find thatA? = 0 for too many nodes for the
to be the optimum solution obtained by the linear prograsearch of the order space to get started. To address thes issu
for the order. Denote the optimum decoding delaylds= we introduce the following algorithm that starts from a fbkes
Zle Az. The following theorem is proved in Appendix B. transmission order and (perhaps) relaxed energy constrain
corresponding to that order. Following the presentation of

Theorem 2. If A} = 0, useT}" to denote the optimum decod-|gorithm 2 we specify the choices we make in various cases.
ing delay (under the same energy and bandwidth constramts[)

B. Optimizing transmission order

of the “swapped” transmission order: Algorithm 2:
1) Initialize the algorithm with an initial transmissiondmar
0,....i—2,4,i—1i+1,....,L] if i<L-1 (10) and corresponding energy constraints.
0,....,L—2,L] if i=L ' 2) Tighten the energy constraints slightly.

. 3) Use Algorithm 1 to re-optimize the route under the new
ThenTg* < Tj. energy constraints.

The intuition behind Theorem 2 is illustrated in Fig. 2. 4) If the energy constraint now equals the target energy,
A solution to the LP withA; = 0 indicates that either node terminate the algorithm. Otherwise, using the newly
i decodes aexactlythe same time as node— 1 (never the found route, return to step 2).
case in reality) or that, although later in the order, nodan As with most non-linear iterative optimization routines,
actually decode before node- 1. Therefore, swapping the the choice of step size, by which the energy constraints in
ordering of nodes andi — 1 will typically decrease thd;, Algorithm 2 are tightened, is important. Ideally, the energ
once the LP for the revised order is solved.il= L the constraints are tightened only enough that a sidgidecomes
destination is swapped with the node prior to it in the ordeequal to zero. This can typically be accomplished by making



the increment small or dynamically choosing the incremeat low energy a very different route is optimal, requiring th
(i.e., back-off the increment and resolve if multiple equal participation of nodes that do not decode at higher energies
zero). We now discuss the initial transmission order we us@d which are therefore dropped from the transmission order
for the per-node and sum-bandwidth scenarios. by our algorithm.

When per-node bandwidth constraints (8) are used, therThe example we consider is a four-node network. Node
unlike the scenario described by Theorem 1, there is a tradlee source, nod8 is the destination, ané; = 1 andW,; = 1
off between energy and delay. At one extreme, when tifier all ;. Consider the situation wheB = 1, Wy,04cCo.1 =
energy constraint is fully relaxed, nodes are allowed uitdich 7 bits/sec, WhodeCo.2 = 5 bits/sec, WhoaeCo,3 = 4 bits/sec,
energy consumption and the network can thereby achieve #g.q.C12 = O0bits/sec, WhoaeC1,3 = 4Dbits/sec, and
minimum possible transmission delay. The transmissiordi,,q4.Cs 3 = 17 bits/sec.
at this extreme is what we term tfiilwoding order which is When the system has no energy constraint, the flooding
easily found as follows. The source node starts transmittiorder will be [0, 1, 3]. Node 1 decodes atl/7 second. Then
at time 0. Other nodes join in and begin transmitting aboth the source and nodetransmit for anothe8 /56 second,
soon as they decode. All nodes continue to transmit undihd the destination then decodes. The transmission duratio
the destination decodes. The flooding order and correspgndis 12 ~ 0.196 seconds and the energy consumption is
energy can then be used to initialize Algorithm 2. % + 2% = 0.25. Node2 never decodes in this case.

In contrast, when a sum-bandwidth constraint is imposed,On the other hand, the minimum energy ordef(is2, 3].
the flooding order cannot be used to initialize the systerNode2 decodes at/5 second. The source turns off and n@de
This is because whenever a new node comes on-line starts transmitting. The destination deco(es- 4/5)/17 sec-
the flooding order the bandwidth usage increases and theds later. Nodé never decodes in this case. The transmission
sum-bandwidth constraint may be violated. Instead, foseheduration isi2 ~ 0.21 seconds and energy consumption is also
networks we construct our initial transmission order stagrt 0.21 since only one node transmits at a time.
from the non-cooperative shortest-path route. If nodesato n However, if we initialize using the flooding order, we
perform mutual information accumulation, and if nodes onlyannot obtain results matching the minimum energy order. If
receive in the time-slot immediately preceding the time afther only the source transmits, or the source transmitié un
which they decode, then it is easy to solve for the optimuabdel decodes and then nodetransmits by itself until the
such non-cooperative path using the Dijkstra Algorithm][26destination decodes, the transmission duratidhds seconds
As our initial transmission order, we add to this shortesind the energy consumption (s25. In both these cases the
path route the nodes that are able to decode the packet wbagrgy consumption is identical to the flooding route. Thus,
non-cooperative shortest-path routing is used and allrothgithout a way to re-introduce nod into the transmission
nodes use mutual information accumulation. We calculage tbrder our algorithm would not obtain the optimum minimum
energy used by this route and initialize the energy comdtraknergy solution when initialized with the flooding order.
accordingly. One can consider heuristics for re-introducing nodes imgo t

2) Characteristics of final route:Since, as noted in the decoding order. For example, one might query nodes that have
discussion surrounding Thm. 2, nodes will never in realityeen dropped whether they can decode at the current sglution
decode aexactlythe same time, and since there are only and if they can, reintroduce them into the transmission rorde
finite number of orderings, our algorithm will converge. Bhu One can see from the four-node example that since rode
the mechanism that keeps our algorithm from necessardlpes not decode when the flooding order is used, use of this
reaching the global optimum is the swapping of nodes ogarticular heuristic does not necessarily result in thénoym
of the transmission order. That is, when the- 1st node is minimum-energy route being found.
swapped with nodé. (the destination), it no longer enters the
LP formulation. This makes the decoding constraint (4)e¥asi . .
to meet. Intuitively, it makes sense to drop nodes that are Multicasting
further from the source than is the destination. Howevenay The basic multicasting scenario (sending a common mes-
turn out that a node that was swapped out of the transmissigage to all nodes) requires all nodes to decode. The only
order could have ultimately prove useful. Our algorithm sloehange required in the various versions of the LP stated)in (4
not reintroduce nodes and so can converge to a sub-optiry@l to yield a multicast solution is thdt becomesV.
solution. In contrast to the situation in unicasting, in multicasting

Because of the exponential number of orderings we expextdes are never dropped from the transmission order. The
the problem of finding the optimal transmission order to bmain cause for our algorithm only achieving local rathemtha
NP-hard. Note that for a special case of our problem, namejipbal optimality discussed in Sec. IV-C2 is thereby olrdat
the low SNR limit where mutual information accumulatioriTherefore, we should nearly always achieve the global opti-
and energy accumulation become identical, Maric and Yatesim using our iterative approach. The one remaining caveat
[11], [12] already proved that finding the optimal route is-NPis the step-size: it is important to reduce the energy camtr
hard. Thus, it is not surprising that there must be a cavdastween LPs in small enough increments that onlyApgoes
to how well our algorithm performs. However, our empiricalo zero per iteration. In a realistic network this will noritga
observation is that, as long as the solution space is “smioothe possible, but in an artificial network it is conceivablatth
as one reduces the energy from that used to initialize thede-to-node gaing; ; will coincidentally have values such
search, one almost always reaches the global optimum. ©at multipleA; go to zero at the same time.
the other hand, we next provide an example of “non-smooth” There is also a multicasting problem between unicasting
conditions where at high energy one route is optimal, arahd basic multicasting (frequently also called “broadogs}



where we require some subset of tNe+ 1 nodes to decode. the non-cooperative and cooperative schemes. The inctamen
This scenario is also easy to incorporate into our framewoidecoding delay incurred by each node in the rout&ig. and
One simply never drops any of these (now multiple) “destthe overall delay ism,. = NAm,.. The incremental delay is
nation nodes” from the transmission order. In term of the LBalculated asB = C;_; jWrAm,. ~ log, eNio g—jWTATnc,
nodel is the index of the last of these destinations to decodsnd solving forAr,. gives

. : 1 BNy D?
E. One-dimensional networks AType = 0

, . _ _ logy e PWr N2
In this section we develop the results on the one-dimenkiona
network presented in Sec. lll. Such networks are unrealisti When nodes accumulate mutual information, the incremen-
cally simple, but their simplicity makes it possible to deri tal delay is reduced. The decoding constraint of Akfe node
analytical results and insight. isB = Zle Cr—1,kAk—1,k—14+1- In @ large network ¥ large)
The one-dimensional topology and the monotonic patthe A4; ;1 will approach a steady state value fpr> 0. The
loss imply that the minimum energy transmission order length of each time-slot will also approach a steady staltgeva
[0,1,...,L—1, L]. Furthermore, the sum-bandwidth constraind7.. For suchj, since the node is allocated all bandwidth for
implies that only one node is active per time-slot—tttenode durationAr., the corresponding allocatiof; ;1 = A7 Wr.
only transmits in time slot + 1. In the asymptotic limit of N large these time-slots domi-
Since P, = P for all i we know by Theorem 1 that thenate the overall delay. In this regime we cal2culailﬁ:C as
minimum delay route is the minimum energy route. This resu = 3, Cy_1 s WrA7, = WrA7 logye bz S =
is especially apparent for this network. The node closeBtdo | the limit asV (andk) go to infinity, we have 7, & = %2
destination that has already decoded also has the bestedbang,g -
to all remaining nodes that have not yet decoded. And, when 1 BN, D? 6
P, :_E for all nodes, it also has the higheSt ;, to those . At = @P—WTWF'
remaining nodes. Thus, not only should that node transmit,
under a sum-bandwidth constraint it should be allocated allThe cooperative gain is then calculated as
the bandwidth. Energy is therefore not expended anywhere NA 2
.. .. Tne Tne i
else and the minimum energy and minimum delay routes are — = =—.
the same. If node PSDs are not all the same, the optimum .  NAT 6
decoding order remains the same and an LP can be solved to
find the optimum{4, ;}. When theP; are not all the same, V. DISTRIBUTED ALGORITHMS
there may be an energy-delay trade off. It is often not desirable or even possible to centralizeingut
The transmission delay can be computed by solvirghd resource allocation as CSI must be aggregated centrally
A,1Co1 = B, A12C12 + Ap1Co2 = B, and in general and the resulting decision dispersed globally. Limitasiamn
b1 centralized solutions are particularly constraining fogk and
ZAZ' 1Cix = B (11) tempqral_ly varying r)etworks. We have_ therefore developed
= ' two distributed algorithms that are inspired by the chamact
istics of our centralized solution. These algorithms regjfer
less CSl, perform mutual information accumulation, anddyie

for eachk, 1 < k < N — 1, which we can write as as

Co,1 0 e 0 Ao B performance n.early as gopd as the _centralized algorithms. _
o o Al B These algorithms are distributed in the sense that there is
0,2 1,2 = | . |. no single node that has to have all information about all the

: : 0 : : channels. On the other hand, as is true for many modern ad-hoc
Con Cin ... Cn_in AN_1N B routing algorithms, control messages do need to be propdgat

) _ through the network.
Note that since the nodes are equally spaced and have iglentic

transmission PSD</; = Cj ;+;. We LetKC denote the lower o )
triangular matrix containing th€; .. As the length of theéth ~ A. Distributed Algorithm 1

time slot isA;_1,;/Wr, the transmission delay. is given by The first distributed algorithm commences with a direct

N 1 transmission from source to destination. In an iteratighi@an
o Do Aic1i B W[l 1K1 intermediate nodes are added to the rdugpecifically, the
°c W - Wr il source transmits a sounding signal. All nodes estimate thei

channel from the source. The destination replies with arsgco
The equation above is the general form of the transmissisaunding signal. Nodes then estimate their channel to the
delay for a finite length one-dimensional network, and walestination. Given this pair of CSI measurements each node
used to derive the results plotted in Fig. 1. Wh¥nis large determines the potential energy savings if it were to jom th
andP is small, such thalv2 P is small, the spectral efficiency path. Potential energy savings are calculated as

N P B (Cir. — Co.0)(Coi — Co.)
(k —1i)?D? No Wr Co,:Co,.Cs1. '

hi P
Cix = log, [1 + L } = log, [1 +
Ny

is well approximated abg, e (5—)2DZ No " SinceP is small  app,q principle of the algorithm is somewhat similar to the PABorithm

the multi-hop route through every node is optimum both fafescribed in [25].



Each node broadcasts this information to the rest of th
network using any of the many available contention multiple
access schemes. The node with the highest energy saving
chosen to participate. In the next step, the CSI from thaenod
to all other nodes in the network is determined. Again, all
nodes analyze whether they can save energy by joining tt
route. The process continues until no further (or very kajt
energy savings are possible.

The algorithm is simple and, as we see in Sec. VI, ven
effective. It does have one drawback. The initial setup of ¢
route takes a long time and requires source-to-destination
nectivity. If the source-to-destination pathloss is highpng
sounding signal is required (noise averaging over a long tim
to obtain good CSI estimates). On the other hand, once a rou
is set up, changes (due to changing channel conditions)e&an
done rather efficiently, since the route can be modified witho
tearing down and rebuilding it from scratch. If the source-t
destination pathloss is too high, a hybrid cooperativefimulrig. 3. Location of nodes in fifty node network. The minimumeggy
hop strategy could be envisioned where nodes close to tieeperative (solid) and non-cooperative multi-hop (dtteutes are shown.
destination cooperate to get the message to an intermediate
node (the first hop) which then serves as a new source to
forward the message on to the destination.

13 <17,
B oy w

A6

(listening to all previous transmissions instead of just th
immediately prior transmission). By studying both we get
B. Distributed Algorithm 2 a sense of the fractional performance improvement due to

A somewhat simpler algorithm can be implemented 4Be use of mutual information accumulation, and that due
follows. The destination broadcasts a sounding signal énd ® the use of a route designed specifically for cooperative
nodes estimate their channels to the destination. The souffi@nsmission. _ _ .
starts to transmit the information packet. As each nodedieso Our algorithms were implemented in Python, calling the
they transmit their node-to-destination CSI to the detiina GLPK [27] LP solver when necessary. We recall from Sec-
(or to the other nodes) to determine if their CSl is bettenthdion IV-C and IV-D that, to aid our search of the order
the currently transmitting node. If it is, they take over théPace using Algorithms 1 & 2, we use an adaptive step size
transmission, and the previously transmitting nodes ceise When tightening the energy constraint. The ideal tightgnn
transmit. New nodes replace previous nodes in turn until tR8€ such that a singl; = 0. Say, for instance, that we
message reaches the destination. solve the LP with energy constraid™, which is the prior

Because of the lack of network-wide CSI, the algorithms gMnergy constraint reduced by someand that we find multiple
this section require the use of rateless codes. This is itrasm 2; = 0. Then, we re-solve the LP with the energy constraint
to the centralized algorithms which could in principle usglightly loosened td++/2. If we still have multipleA} = 0
block codes with appropriately chosen rates once the lendfg try again withE™ + 3+/4 and so forth, each time halving
of each time slot is solved for by the final LP. the previous increment.

V1. NUMERICAL DETAILS OF RESULTS A. System wide bandwidth constraint

In this section we give detailed numerical results for the We first consider a sum-bandwidth constraint on the specific
algorithms developed in this paper for two-dimensiob@ network shown in Fig. 3 wherd3 = 28.9 bits (20 nats),
node networks located in the unit square. For all exampld/2 = 1, W = 1, and P, = P = 1 for all i. By
the source nod@ is located at[0.2,0.2] and the destination Theorem 1, under a sum-energy constraint the minimum-delay
node49 is located at[0.8,0.8]. Remaining nodes are placedand minimum-energy routes are the same. There is no energy—
randomly according to the uniform distribution. A typicaldelay trade off.
network from this ensemble is shown in Fig. 3. In order to give After solving for the route using our centralized algorithm
the reader a strong sense of the relationship between ggomete find that the subset of nodes that actually transmit in the
and channel strength we study the case where the channel diaial transmission order i§0, 16, 33,9,47, 14, 43,22, 38, 49,

h;,; between nodeé and nodej is deterministically related to indicated in Fig. 3 by the solid line. As can be seen from
the Euclidean distance; ; between them as; ; = (dl-_,j)*Q. inspection of the figure, the nodes that are active in thetisolu

To quantify the performance of our algorithm we establishre the nodes that lie closest to the direct path betweerasour
a baseline non-cooperative strategy for comparison. Fer tand destination. This is due to the fact that channel gain is
baseline we choose multi-hop. Only one node transmits iaversely proportional to distance squared. For this examp
each time. The route is selected using Dijkstra’s shortatt p network the destination decodes after= 13.09 seconds.
algorithm [26], and each node listens only to the transmissi We now develop results for a non-cooperative multihop
of the node that immediately precedes it in the route. We alsauting example. In the non-cooperative case, and as @eskri
consider a hybrid strategy that uses the Dijkstra-basetkrotor linear networks in Section IV-E, the incremental delay
but where nodes perform mutual-information accumulaticaccrued by the hop from nodeto nodej is B/Wr C; ; =
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Fig. 5. Delay versus energy trade off in fifty-node networkodNs are

. N . L . . uniformly distributed in the unit square. Channel gains preportional to
Fig. 4. Delay distribution: centralized, distributed, rcooperative solutions. d—2, whered is the distance between transmitter and receiver. The sum-

energy across all nodes and the per-node bandwidths artedimi

B/Wrlog, {1 + h}'{f] For the node placements in Fig. 3 the

shortest path route is found to B 9,49], indicated in the

figure by the dotted line. The resulting source-to-destmat
delay 7, is 21.47 seconds. There is only one active rela
node in the shortest-path route, the one closest to thetdir
path connecting source to destination. This node (number
also participates in the cooperative route.

a trade off between system resources (energy and bandwidth)

and transmission delay. We keep the same parameters as be-

ore, namelyB = 28.9 bits (20 nats),Ny/2 =1, P, =P =1,

d set the per-node bandwidth constrdiit = 1 for all 7.

e energy-delay trade off achieved is plotted in Fig. 5.

. e ; : At one resource extreme we flood the network, fully relax-
The_decrease in transmission duration obtameq by our ﬁﬁ’g the sum-energy constraint and allowing nodes unlimited

operative route stems both from the use of mutual-inforomat energy consumption. The network can then achieve the mini-

accumulation and the use of a route tuned to cooperaﬂdnelftmum possible transmission delay. In the network depicted in

nodes perform mutu_al informatiq.n accumulati_on, but o_n;b tr’\:ig. 3 all nodes excef, 4, and44 participate in the flooding
nodes in route obtained from Dijkstra’s algorithm partéip routing. The order in which nodes come on-line as transrsitte
in transmission, the transmission delay @551 seconds. Thus, is [0,13,17, 39,42, 16, 2, 36,23, 15 20,32, 34,8, 49]. The

roughly half the decrease in transmission duration is due 80ding energy isl8.51 and the transmission delay s
the use of mutual information accumulation, and half due O As the energy b'udget is decreased. nodes with.weaker
the use of a route tuned to mutual information accumulatio snnectivity to the destination go off-line’and only nodégw

To ensure that the improvement is not specific to the Sampy onger channels remain active. Finally, at some minimum

Sz}g;sflg\?;rzg.e?]’s\évr?]bﬁglgigtl)aitr? dghpeegéségg;té%mg:ags dcfg;r:_gnergy, the network becomes disconnected. The limit pdint o
izations of networks of the type depicted in Fig. 3 where thdelay as the energy approaches is defined as the minimum-

source and destination locations are held constaftt 2t0.2] i;eeﬁ?/niﬁ;iﬁ-ngfg:g; rgﬂ;glig. 3205; i@elzitgv (;;k 3? 4|;]Ig. 8

and[0.8,0.8], respec_tively, and the rest of the nodes are plac?j picted by the solid line. The minimum energylB09 and
uniformly on the unit square. the minimum delay is13.09, the same as in Sec. VI-A. The

. g . %w—energy route has only a single transmitter transngjttin
delay is plotted in Fig. 4. The average delay of teatralized at any given time. This is because if each node waits for

cooperative routing using mutual information accumulaii® ; o P
P g 9 all prior transmissions to complete before beginning itsrow

12.54 seconds, while the average delay of non'COOper"jlt'f’r(?;\nsmission,that node will have accumulated the most ahutu

routing, solved for using Dljkstrashortest-_patkalgorlthm, 'S information possible. Therefore, the optimum route hagy onl
21.52 seconds. On average, the conventional non-cooperat

) ST o offe node at a time transmitting. Since only one node at a
multihop transmission incurs additional delay and energy o transmits. the system bandwidth is constant. Thusan t
usage on the order of 70%. ' )

” L low-energy limit the sum-bandwidth and per-node bandwidth
In addition, in Fig. 4 we also plot CDF results for the onstraints are fully comparable.

two distributed routing algorithms introduced in Section v When the energy budget is increased, multiple nodes can
The penalty for using the distributed algorithms in terms qf it simul V.| hen bandwidth
delay (or, equivalently, energy) is small. On average thst ﬁrran_smlt simu tane(()jus y- n cont(rjastt,) W enh andwidth con-
distributed algorithm incurs less than5% excess delay as straints are imposed on a per-node basis, the non-coogerati

. ; cheme is limited to the transmission band of a single node.
compared to the centralized solution. The excess delayeof erefore. the peak bandwidth and enerav used by the co-
second distributed algorithm is less tha%. ' P 9y y

operative strategy when the transmission delay is minichize
) . can exceed that of the non-cooperative strategy, even thoug
B. Per-node bandwidth constraint the total energy consumption is lower. For instance, for the
We now again consider the network of Fig. 3, but this timexample discussed in Sec. VI-A,. = 21.47 and sinceP; = 1
under per-node bandwidth constraints. In this settingether and W; = 1 for all ¢, the energy consumption of the non-
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cooperative case is al€1.47, which exceeds the cooperativgfor any ordering) and we need only considex i < L.
flooding energy of18.51 mentioned above. Of course, for
this case, the improvement of delay is more impressive: theCase 2:(2 <: < L—1) We show thak (cf. (9)), a “swapped”

flooding route has a delay 6f4 compared t@1.47. version ofx*, is a feasible solution for the swapped ordering
that has a decoding delay equal to the optimal decoding delay
VIl. SUMMARY AND CONCLUSIONS of the original ordering. Define
In this paper we analyze the problem of resource allocation _ [A Ar Aii A A A i
in cooperative relay networks that use mutual-information. [~ 1 DL A0 020 B0,L L2y - AL-LL ]

accumulation. We divided the problem into one of finding thgnere
best transmission order and one of finding the best resource
allocation given a transmission order. As our solution isdaa A = A forall

on solving a sequence of LPs it is computationally efficient, A Af forall k,istk#i—1k+#1
even for large networks. We show that under equal per-node A 0

PSDs, the minimum-delay solution also minimizes energy Ail1 Ar forall je{i+1,...,L}
consumption. The resulting route is markedly differentriro 1. — A forall ie (i4+1 L)

the conventional shortest-path route. We develop dideibu J =L J Pl

algorithms that retain most of the performance gains withogs immediately seQ}L A — Z-L A*. We now show that
requiring centralized knowledge of CSI. s satisfies all problerﬁ:éonzstraintzsz.l ’

The approach of this paper is a step towards the realizatiorgjrgt note that all but two of the degree-of-freedom allo-

of practical cooperative communications in large netwmkéationsAij made to each node in each time slot are almost

Future work will focus on optimizing power allocations (the,| ijentical inx* andx. There are two exceptions. The first,
P;), algorithms that are suitable for imperfect channel statg

ﬁl, ; doesn't appear i, but 4;_; ; = 0 sinceA; = 0. The
information, and the impact of non-ideal codes and hardwageecé’ndfi_ - :pop . 1,
Acknowledgments:We thank Dr. Neelesh Mehta for useful From this we immediately get that the energy, decoding, and

‘(;Ilscust?loKn?, z;mdﬂl?r: Jin Zha?g, gr. Kent W|ttenblirg, and Déegrees-of-freedom constraints remain satisfiedxfoSince
oseph Ralz for their support and encouragement. the non-zero degree-of-freedom allocations are iderfiicat*
andx, the energy usage remains the same under either sum-
APPENDIX energy or per-node-energy constraints. For the same réfason
A. Proof of Theorem 1 decoding ability of nodes, ...,7—2, nodesi+1,..., L, and
the “old” (pre-swapped) node- 1 remain unchanged. The old
node: doesn’t benefit from the old node- 1's transmissions

i—1,i

Start from the energy usefl,scq

L-1 L L1 any longer since the order is swappedinHowever, because
Busea=»_ Y AijPi=Y AWrP=TWrP. (12) A, = o, Ai—1,; = 0 and it didn’t accumulated any mutual
i=0 j=1 i=0 information in the old order in any case. Finally, since the

The second equality must hold else (7) is loose at the optimuR®sitive degree-of-freedom allocations remain the samd, a
But that would mean that some degrees of freeddngo the time-slot durationsh; remain the same, all degree-of-
unallocated in some time slot. If this is the case the degpdiffeedom constraints remain satisfied.

time can be strictly decreased by moving up all subsequenfCase 3:(i = L) For the same reasoning as in case 2, if
decoding times byl /Wr. we define the same vectdr, the decoding delay remains the

The third equality holds by definitionZ.L’Ol A, = T,. Same and all constraints remain satisfied. Now, if we drop the
1= " . .
Since the duration of decodinfg. is proportional to the energy ("eW) nodeL from the problem completely (the destination
usedEyseq, Minimizing one minimizes the other. is the new nodd. — 1) the reduced solution is still feasible
since none of the other nodes relied on the dropped nodes’
transmission. (It was the last in the order).
B. Proof of Theorem 2
Case 1:(i=1; the index: refers to theith non-source node
in the transmission order and thth time slot) Combine node
1's decoding constraint (4) with the total degrees-of-fiimad [1] Zigbee Alliance, www.zigbee.org, latest version.

o _ ; _ [2] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperatiiversity-
in time slot1 (7) or (8)’ for the sum-bandwidth and per node part |: System descriptionJEEE Trans. Comm.p. 1927-1938, 2003.
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