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Abstract—We suggest and analyze algorithms for routing in
multi-hop wireless ad-hoc networks that exploit mutual infor-
mation accumulation as the physical layer transmission scheme,
and are capable of routing multiple packet streams (commodities)
when only the average channel state information is present, and
that only locally. The proposed algorithms are modifications of
the Diversity Backpressure (DIVBAR) algorithm, under which the
packet whose commodity has the largest “backpressure metric”
is chosen to be transmitted and is forwarded through the link
with the largest differential backlog (queue length). In contrast to
traditional DIVBAR, each receiving node stores and accumulates
the partially received packet in a separate “partial packet queue”,
thus increasing the probability of successful reception during a
later possible retransmission. We present two variants of the
algorithm: DIVBAR-RMIA, under which all the receiving nodes
clear the received partial information of a packet once one or
more receiving nodes firstly decode the packet; and DIVBAR-
FMIA, under which all the receiving nodes retain the partial in-
formation of a packet until the packet has reached its destination.
We characterize the network capacity region with the Renewal
Mutual Information Accumulation (RMIA) transmission scheme
and prove that (under certain mild conditions) it is strictly larger
than the network capacity region with the Repetition (REP)
transmission scheme that is used by the traditional DIVBAR. We
also prove that DIVBAR-RMIA is throughput-optimal among the
polices with RMIA, i.e., it achieves the network capacity region
with RMIA, which in turn demonstrates that DIVBAR-RMIA
outperforms traditional DIVBAR with respect to the achievable
throughput. Moreover, we prove that DIVBAR-FMIA performs
at least as well as DIVBAR-RMIA with respect to throughput.
Simulations also confirm these results.

Index Terms—Stochastic Network Optimization, Wireless Ad-
hoc Networks, Backpressure Algorithm, Renewal Mutual Infor-
mation Accumulation (RMIA), Full Mutual Information Accu-
mulation (FMIA), Repetition Transmission Scheme (REP), d-
timeslot Lyapunov drift

I. INTRODUCTION

Wireless multi-hop ad-hoc networks have drawn significant
attention in recent years, due to their flexibility and low cost,
and their resulting importance in factory automation, sensor
networks, security systems, and many other applications. A
fundamental problem in such networks is the routing of data
packets, i.e., which nodes should transmit which packets in
which sequence. The throughput performance becomes an
issue when a single stream or multiple streams of packets
intended for a single destination or multiple destinations
(i.e., multiple commodities) flow through a network. In wired
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networks, the single packet stream case has been well-explored
by several approaches, such as Ford-Fulkerson algorithm and
Preflow-Push algorithm (see Ref. [1], Chapter 7 and references
therein), and Goldberg-Rao algorithm (see [2] and references
therein); simultaneous routing of multiple packet streams have
also been extensively explored (see Ref. [3], [4] and references
therein). However, this problem becomes more challenging to
solve in wireless scenarios, where the links are neither reliable
or precisely predictable.

To deal with this issue, several studies focus on the routing
in the wireless network with unreliable channels and possible
multiple commodities. The ExOR algorithm [5] takes advan-
tage of the broadcast effect, i.e., the packet being transmitted
by a node can be overheard by multiple receiving nodes. After
confirming the successful receivers among all the potential
receiving nodes after each attempt of transmission, the trans-
mitting node determines the best node among the successful
receivers to forward the packet in the future according to the
Expected Transmission Count Metric (ETX) [6], which indi-
cates the proximity from each receiving node to the destination
node in terms of forward delivery probability. As a further
improvement, the proactive SOAR algorithm [7] also uses
ETX as the underling routing metric but leverages the path
diversity by certain adaptive forwarding path selections. Both
ExOR and SOAR have shown better throughput performance
than the traditional routing methods, but neither theoretically
provides a throughput-optimal routing approach for multi-hop,
multi-commodity wireless ad-hoc networks.

Throughput maximization can be tackled by stochastic

network optimization, which involves routing, scheduling and
resource allocation in networks without reliable or precisely
predictable links but with certain stochastic features. Refs.
[8], [9] systematically analyze this kind of problems by
using Lyapunov drift analysis originating from control theory,
which follows and generalizes the Backpressure algorithm
proposed in [10] [11]. The backpressure algorithm establishes
a Max-weight-matching metric for each commodity on each
available link that takes into account the local differential
backlogs (queue lengths or the number of packets of the
particular commodity at a node) as well as the channel state
of the corresponding link observed in time. The packet of
the commodity with the largest metric will be transmitted
from each node. Thus, the backpressure algorithm achieves
routing without ever designing an explicit route and without
requiring centralized information, and therefore, is consid-
ered as a very promising approach to stochastic network
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optimization problems with multiple commodities. The idea
of Backpressure routing was later extended to many other
communication applications, e.g., power and server allocation
in satellite downlink [12], routing and power allocation in
time-varying wireless networks [13], and throughput optimal
routing in cooperative two hop parallel relay networks [14].

Based on the principle of Backpressure, [15] developed the
Diversity Backpressure (DIVBAR) algorithm for routing in
multi-hop, multi-commodity wireless ad-hoc networks. Similar
to ExOR and SOAR, DIVBAR assumes a network with no
reliable or precisely predictable channel states and exploits
the broadcast nature of the wireless medium. In essence, each
node under DIVBAR locally uses the backpressure concept
to route packets in the direction of maximum differential
backlog. Specifically, each transmitting node under DIVBAR
chooses the packet with the commodity optimal to transmit
by computing the Max-weight-matching metric, whose factors
include the observed differential backlogs and the link success
probabilities resulting from the fading channels; after getting
the feedbacks indicating the successful receptions from all
the receiving nodes, the transmitting node lets the successful
recipient with the largest positive differential backlog get
the forwarding responsibility. DIVBAR has been theoretically
proved to be throughput-optimal in wireless ad-hoc networks
under a set of assumptions, notably that any packet not cor-
rectly received by any receiving node needs to be completely
retransmitted in future transmission attempts. Here we call
the scheme of complete retransmission the Repetition (REP)
transmission scheme.

The efficiency of transmissions can be greatly enhanced by
Mutual Information Accumulation (MIA), where the receiving
nodes store partial information of the packets that cannot
be decoded at the previous transmission attempts. MIA can
be implemented, e.g., by using Fountain Codes (or rateless
codes) [16] [17] [18]. The transmitter encodes and transmits
the source information in code stream of unbounded length,
and the receiver can recover the original source information
from any portions of the code streams, as long as the amount
of total accumulated information exceeds the entropy of the
source information. Moreover, Fountain codes can work at
any SNR, and therefore, the same code design for MIA can
be used for broadcasting from one transmitter to multiple
receivers whose links to the transmitter have different channel
gains. In the meanwhile, Fountain codes can accumulate the
partial information from multiple transmitters. Thus, with the
MIA technique, the transmissions of a packet in previous
timeslots can facilitate the decoding of the packet in the current
timeslot, which is the key difference from REP. Refs. [19], [20]
introduce MIA into the routing of multi-hop ad-hoc networks,
and have shown that the delay performance can be enhanced
with constrained power and bandwidth resources. However,
none of above papers touches the throughput performance of
ad-hoc networks with MIA.

For multi-hop, multi-commodity wireless ad-hoc networks,
the throughput might be increased when implementing MIA
instead of REP. An intuitive approach of exploring this prob-
lem is to combine MIA with Lyapunov drift analysis, and
design a “MIA version” of Backpressure or DIVBAR algo-

rithms. Following this strategy and parallel to our work, Ref.
[21] proposed a T-slot routing algorithm and a virtual queue
routing algorithm for multi-hop, multi-commodity wireless ad-
hoc network with broadcast effect and single-copy routing

assumption (redundant packet transfers are not used). These
two algorithms assume that each link in the network has fixed
and reliable transmission rate, and each transmitting node
making local decisions can predetermine the local transmitting
and forwarding realizations based on the backlog and virtual
queue observations.

In this paper, in contrast with Ref. [21], we explore the
multi-hop, multi-commodity, single-copy routing in the case
of unreliable and non-precisely predictable rates. We assume
that the network has stationary channel fading, i.e., the distri-
bution of the channel realizations remain the same, however,
the realizations vary with time; although no precise channel

state information (CSI) at the transmitter is available, the
distributions of the channel realizations of each link can be
obtained by the transmitter beforehand, i.e., each transmitting
node has the average CSI; the transmitting node can obtain the
receiving (decoding) results by some simple feedbacks sent by
the receiving nodes through certain reliable control channels.

Our contributions of this paper are summarized as follows:

• We analyze the network capacity region [8] [9] of ad-
hoc networks employing the Renewal Mutual Information

Accumulation (RMIA) transmission scheme under the
single-copy routing assumption. Here “Renewal” stands
for a clearing operation; and RMIA is the transmission
scheme in which all the receiving nodes accumulate
the partial information of a certain packet and try to
decode the packet when receiving it, but clear the partial
information of a packet every time the corresponding
packet is firstly decoded by one or more receiving nodes
in the network. We prove that the network capacity region
with RMIA is strictly larger than the network capacity
region with REP under some mild assumptions, and
quantitatively compute a guaranteed extension magnitude
of the region boundary for each source-destination pair.

• We propose and analyze two new routing algorithms that
combine the concept of DIVBAR with MIA. The first
version, DIVBAR-RMIA is implemented with RMIA,
and is shown to be throughput-optimum among all rout-
ing algorithms with RMIA. Under the second version,
DIVBAR-FMIA, all the received partial information of
a packet is retained at all the nodes in the network until
that packet has reached its destination, which is called the
Full Mutual Information Accumulation (FMIA) transmis-
sion scheme. We prove that DIVBAR-FMIA’s throughput
performance is at least as good as DIVBAR-RMIA’s. In
summary, both proposed algorithms can achieve larger
throughput limits than the original DIVBAR algorithm
with REP.

The remainder of the paper is organized as follows: Section
II presents the network model including the implementation
of MIA, the timing diagram for one timeslot and queuing
dynamics, and the RMIA and FMIA transmission schemes.
Section III characterizes the network capacity region with



3

RMIA and compares it with the network capacity region
with REP. Section IV describes the two proposed algorithms:
DIVBAR-RMIA and DIVBAR-FMIA. Section V proves the
throughput optimality of DIVBAR-RMIA with the RMIA
assumption and proves the throughput performance guarantee
of DIVBAR-FMIA. Section VI-A presents the simulation
results. Section VII concludes the paper. Mathematical details
of the proofs are relegated to Appendices.

II. NETWORK MODEL

Consider a stationary wireless ad-hoc network with N
nodes, denoted as node set N . Multiple packet streams indexed
by c ∈ {1, · · ·N} are transmitted, possibly via multi-hop.
Categorize all packets in the packet stream destined for a
particular node c as commodity c packets irrespective of their
origin. Each directed wireless link in the network is denoted
as (n, k), where n ∈ N is the transmitting node and k is
the receiving node belonging to the receiver set, denoted as
Kn, of node n. Data flows through the network in units of
packet, all of which have the same fixed (positive) amount of
information (entropy) H0. Packets arriving at each node either
exogenously or endogenously are stored in a queue waiting to
be forwarded, except at the destination, where they leave the
network immediately upon arrival/decoding. The transmission
power of each node is constant.

Time is slotted and normalized into integer units τ =
0, 1, 2, 3, · · · . The timeslot length is assumed to be equal to
the coherence time of the wireless medium in the network,
so that we can adopt the common block-fading model: for
each link, the (instantaneous) channel gain is constant within a
timeslot duration, while it is i.i.d. (independent and identically
distributed) across timeslots. Correspondingly, the amount of
information transmitted over link (n, k) in timeslot τ , denoted
as Rnk (τ), is i.i.d. across timeslots. Let FRnk

(x) represent the
cdf (cumulative distribution function) of Rnk (τ). We make the
following assumption on Rnk (τ) and FRnk

(x) for all n ∈ N
and k ∈ Kn:

Assumption 1. Rnk (τ) is continuously distributed on [0,∞),
and 0 < FRnk

(H0) < 1.1

Statistics of CSI of each link are known locally, i.e., at the
node from which the link is emanating; however, instantaneous
CSI (i.e., channel gains in a timeslot) is never known at any
transmitting node. The exogenous packet arrival rate a

(c)
n (τ)

(packet/timeslot) at node n for commodity c is i.i.d. across
timeslots, and define a constant Amax satisfying

∑

c a
(c)
n (τ) ≤

Amax. When a packet is transmitted by a node n in each
timeslot, it can be simultaneously overheard by all the nodes in
Kn (“multi-cast effect”). In this network model, a transmission
of a packet over a link (n, k) can be interpreted as a process,
in which a new copy of the packet is being created at the
receiving node k while the original copy of packet is retained
at the transmitting node n, and correspondingly, the multi-cast

1This assumption on Rnk (τ) and FRnk
(H0) is mild and reasonable,

since it is consistent with many practical wireless scenarios. For example,
Rayleigh fading channels and Rice fading channels (see Ref. [22]) satisfy
this assumption.

effect indicates that multiple copies of the same packet can be
created at multiple receiving nodes simultaneously. However,
after each forwarding decision is made among the nodes that
have fully decoded the packet (including the transmitting node
and successful receiving nodes), only the one node that gets the
forwarding responsibility can keep the packet, while the others
discard their copies. Here the forwarding decision result can

be either choosing a successful receiver to forward the packet

to or retaining the packet by the transmitting node itself. This
packet-transferring procedure is consistent with the following
single-copy routing assumption for all the policies discussed
in this paper:

Assumption 2. In each timeslot, the complete copy of each

packet in the network can only be kept by one node.2

Thus, if defining b
(c)
nk (τ) as the number of packets of

commodity c that are forwarded from node n to node k ∈ Kn

in timeslot τ , then based on Assumption 2, b(c)nk (τ) ∈ {0, 1}

and
∑

c:c∈N

∑

k:k∈Kn
b
(c)
nk (τ) ≤ 1, for all n ∈ N .

A. Mutual Information Accumulation Technique

Ref. [15] analyzes the routing algorithms implemented
based on REP, i.e., for each transmission, the packet either is
successfully received at another node, or has to be completely
re-transmitted in a later timeslot. As has been described in
Section I, we suggest to avoid the inefficiencies of complete
retransmission by enabling the MIA technique into the trans-
mission scheme by using, e.g., Fountain codes.

In our scenario, we assume that each link uses a capacity-
achieving coding scheme, so that a packet is received correctly
in timeslot τ if the amount of partial information of the packet
received by the end of timeslot τ exceeds the entropy of the
packet H0, i.e., a successful transmission from node n to node
k in timeslot τ occurs when log2 (1 + γnk (τ))+Ik (τ) ≥ H0,
where γnk (τ) is the SNR over link (n, k) in timeslot τ ,
whose distribution depends on the average channel state of
link (n, k); Ik (τ) is the pre-accumulated partial information

before timeslot τ , i.e., amount of partial information of the cor-
responding packet already accumulated in the receiving node k
by timeslot τ−1. Moreover, although each receiving node may
simultaneously overhear the signals transmitted from multiple
neighbor nodes, we assume that there is no inter-channel
interference among these signals and the successful reception
of each signal is independent of the signals transmitted through
other links.3

To implement routing with MIA technique, each node sets
up two kinds of queues: the compact packet queue (CPQ)

2In a wireless transmission scenario, due to the cooperative nature of the
MIA technique, the network capacity regions under single-copy packet routing
and multiple-copy routing (allowing transferring redundant copies of packets)
can be different. This fact is different from the situation of using the REP
transmissions scheme, where the network capacity regions under multiple-
copy routing and single-copy routing are the same [15]. An efficient multiple-
copy routing with the MIA technique involves designing efficient cooperation
schemes for transmissions from different nodes, which has been beyond the
policy space discussed in this paper.

3While this assumption is not practically realizable in wireless scenarios
unless we use orthogonal channels, it is a standard assumption in the literature
of stochastic network optimizations for wireless networks [13] [15].
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Fig. 1. Timing diagram of the working protocol within one timeslot

and partial packet queue (PPQ). CPQs are FIFO (first in, first

out) buffers storing the packets that have already been decoded
and are categorized by packets’ commodities; while the pieces
of partial information stored in PPQ are distinguished by the
packets they belong to. As soon as the partial information of
a specific packet accumulated in the PPQ of a receiving node
exceeds the entropy of that packet, the packet is decoded and
moved out of the PPQ, and then put into the CPQ if this node
gets the forwarding responsibility, or discarded otherwise.

B. Timing Diagram in One Timeslot and Queuing Dynamics

The timing diagram of the communication protocol be-
tween each pair of sending node (sender) and receiving
node (receiver) within one timeslot is illustrated in Fig. 1,
which resembles the protocol in [15]. As is shown in this
figure, at the beginning of each timeslot τ , the transmitting
node and receiving node exchange their control instructions
which include the backlog information of CPQs. Then the
transmitting node makes the transmitting decision on which
commodity to transmit or to keep silent in timeslot τ . After
the decision is made, the data transmission starts and lasts
for a fixed time period,4 during which the coded bits of a
packet with entropy H0 are being transmitted and overheard
by the receiving node(s). After the data transmission period
ends, each receiving node sends an ACK/NACK signal back
to the transmitting node through a stable control channel
indicating whether the packet is successfully decoded by it
during the transmission period (as will be shown in Section
IV, each receiving node under the proposed DIVBAR-FMIA
algorithm sends two kinds of ACK/NACK signals back to
the transmitting node). Based on the ACK/NACK signals
gathered from all the receiving nodes, node n may make the
forwarding decision on which successful receiver to transfer
the forwarding responsibility to or whether to retain the for-
warding responsibility. This decision is made and is related to
the transmission schemes being used (described in Subsection
II-C). If a forwarding decision is made, a final instruction
carrying the forwarding decision will be sent to the receiving
nodes through the control channel at the end of the timeslot;
otherwise, no final instruction will be sent to the receiving
nodes.

The queuing dynamics over each timeslot is based on the
above timing diagram. Let Q(c)

n (τ) represent the backlog of

4The data transmission period is shorter than a timeslot, due to the
time needed for control information. However, to simplify notation, we will
henceforth neglect this overhead, which can be trivially taken into account
for the throughput and delay results.

the CPQ of commodity c at node n in timeslot τ . The backlog
of commodity c at node n is updated over timeslot τ as
follows:

Q(c)
n (τ + 1) ≤max

{

Q(c)
n (τ) −

∑

k:k∈Kn

b
(c)
nk (τ) , 0

}

+
∑

k:k∈Kn

b
(c)
kn (τ) + a(c)n (τ) , (1)

where the term
∑

k:k∈Kn
b
(c)
nk (τ) is the total output rate;

∑

k:k∈Kn
b
(c)
kn (τ) is the total endogenous input rate flowing

from the neighbor nodes; a(c)n (τ) is the exogenous input rate.
The expression in (1) is an inequality instead of an equality
because the endogenous input rate of the data-carried packets
may be less than

∑

k:k∈Kn
b
(c)
kn (τ). This occurs if a neighbor

node k ∈ Kn has no data of commodity c to send (its CPQ of
commodity c is empty), while the decision made by node k
under an algorithm (policy) is to send a commodity c packet,
so node k sends a fake commodity c packet that is counted
into

∑

k:k∈Kn
b
(c)
kn (τ) while is not counted into Q

(c)
n (τ + 1).

C. The RMIA and FMIA transmission schemes

For each transmitting node n ∈ N in the network under an
arbitrary algorithm using the MIA technique, define an epoch

for a node n as the sequence of timeslots that node n uses
to transmit a copy of a packet: in the sequence of timeslots

when node n transmits packets of a commodity c, an epoch of

commodity c starts from the first timeslot after a forwarding

decision is made for a previous copy of commodity c packet,

and ends at the timeslot when the forwarding decision is made

for the current copy of commodity c packet.
In this paper, we propose two versions of transmission

schemes based on the MIA technique: the Renewal Mutual
Information Accumulation (RMIA) transmission scheme and
the Full Mutual Information Accumulation (FMIA) transmis-
sion scheme. Under both of the transmission schemes, each
receiving node accumulates the received partial information
to decode the corresponding packet. A key difference of the
two schemes is whether they have the renewal operation:

• RMIA: once a transmitting node n confirms that one or
more receiving nodes in Kn first successfully decode the
copy of a packet being transmitted, node n makes the for-
warding decision, which indicates the end of an epoch;5

immediately after the forwarding decision is made, all
the partial information of this packet accumulated at each
receiving node is cleared, which is the renewal operation;
the timeslot when the first successful reception occurs is
called the first-decoding timeslot, and the set of successful
receiving nodes is called the first successful receiver set.
With RMIA, for each transmitting node in a network
that satisfies Assumption 1, each of the receiving nodes
becomes a member in the first successful receiver set with
a positive probability in each first-decoding timeslot.

5In general, when to make the forwarding decision is part of the scheduling.
But the RMIA transmission scheme analyzed in this paper has a fixed rule on
when to make forwarding decision, which is equivalently to form a restricted
policy space. The case of a general policy space with controlling the time of
making forwarding decision is one of the future research directions.
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• FMIA: after the forwarding decision is made (end of an
epoch), instead of clearing the partial information of the
copy of packet being transmitted, each receiving node
k ∈ Kn that does not decode the packet retains the partial
information of the packet and possibly uses it in the
future decoding if node k overhears another copy of the
same packet in later transmissions; here the forwarding
decisions made by each node n are in the first-decoding
timeslots with RMIA, i.e., once one or more receiving
nodes firstly accumulate enough partial information to
decode the packet without using the partial information
retained before the beginning of transmitting the current
copy of packet, a forwarding decision is made. In contrast
to RMIA, FMIA allows the partial information of a packet
to be accumulated from different transmitting nodes since
the retained partial information can be from different
transmitting nodes.

III. NETWORK CAPACITY REGION WITH RENEWAL

MUTUAL INFORMATION ACCUMULATION

In this section, we characterize the throughput potential
of a stationary wireless ad-hoc network. For a multi-hop,
multi-commodity network, let (λ

(c)
n ) represent the matrix of

exogenous time average input rates, where each entry λ
(c)
n =

E{a
(c)
n (τ)}. Let Y

(c)
n (t) represent the number of packets

with source node n that have been successfully delivered to
destination node c within the first t timeslots. Then a routing
algorithm is rate stable if

lim
t→∞

Y
(c)
n (t)

t
= λ(c)

n , with prob. 1, ∀n, c ∈ N . (2)

With the above definitions, Ref. [15] defines the network

capacity region as the set of all exogenous input rate matrices
(λ

(c)
n ) that can be stably supported by the network using

certain rate stable routing algorithms. However, considering
the effect of the transmission scheme on the throughput per-
formance, in this paper, we specify the network capacity region
with different transmission schemes. For example, all the
algorithms discussed in Ref. [15] are based on the Repetition
(REP) transmission scheme, and therefore, we specify the
network capacity region defined in Ref. [15] as REP network

capacity region, denoted as ΛREP. In our work, we define
the RMIA network capacity region, denoted as ΛRMIA, as the
set of all exogenous input rate matrices that can be stably
supported by the network using certain rate stable routing
algorithms with the RMIA transmission scheme.

Throughout this paper, most of the analysis is based on
analyzing the network’s d-timeslot Lyapunov drift, which is
defined as

∆d(Q(t0))
∆
=

1

d

∑

n,c

Eω

{

(

Q(c)
n (t0 + d)

)2

−
(

Q(c)
n (t0)

)2
∣

∣

∣

∣

Q(t0)

}

,

(3)
where d ≥ 1 is a certain positive interval length (in units
of timeslots); t0 is an arbitrary timeslot; the vector Q (t0)
represents the CPQ backlog state of the network in timeslot t0;
Eω is the expectation operator taken over ω, which represents
any realization of the ensemble of channel states, exogenous

packet arrivals and policy decisions of the whole network over
the whole time horizon. In the rest part of the paper, the expec-
tation operator E represents Eω for notational simplification.
With the definition of d-timeslot Lyapunov drift, the following
lemma will be used in the proofs of later theorems:

Lemma 1. If there exists a constant ε > 0 and integer d > 0,

such that for each timeslot t0 and the backlog state Q (t0)
of the network in timeslot t0, the d-timeslot Lyapunov drift

satisfies:

∆d (Q (t0)) ≤ B0 (d)− ε
∑

n,c

Q(c)
n (t0), (4)

where B0 (d) is a constant depending on d, then the mean

time average backlog of the whole network satisfies:

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

n,c

E

{

Q(c)
n (τ)

}

≤
B0 (d)

ε
. (5)

The proof of Lemma 1 is shown in Appendix A. A multi-
hop, multi-commodity network is strongly stable when the
mean time average total backlog is finite, as is shown in (5).

Let F
(m)
Rnk

(x) represent the cdf of
∑m

τ=1 Rnk (τ), where

F
(1)
Rnk

(x) = FRnk
(x); let F

(0)
Rnk

(x) = 1. To facilitate the
theoretical analysis later, we then have the following lemma
to characterize the basic statistical properties of the flow rates:

Lemma 2. Based on Assumption 1, we have the following

relations:

F
(m)
Rnk

(H0) < F
(m−1)
Rnk

(H0)FRnk
(H0) , for m ≥ 2; (6)

F
(m)
Rnk

(H0) < [FRnk
(H0)]

m, for m ≥ 2; (7)

F
(m)
Rnk

(H0) < F
(m′)
Rnk

(H0) , for m > m′ ≥ 0. (8)

The proof of Lemma 2 is in Appendix B. Eq. (6)-(8) demon-
strate the fact that the success probability of the transmissions
of a packet over a link in a time interval (i) increases by
applying MIA instead of applying REP and (ii) increases with
the length of the considered time interval.

A. The network capacity region with RMIA

To begin with, we re-state the characterization of the REP
network capacity region derived in Ref. [15]:

Theorem 1. The (REP) network capacity region ΛREP con-

sists of all the exogenous time average input rate matrices

(λ
(c)
n ), for each of which there exists a stationary random-

ized policy (with REP and single-copy routing), denoted as

Policy∗∗, that chooses probabilities α
∗∗(c)
n , θ

∗∗(c)
nk (Ψn), and

forms the time average flow rate taking value b
∗∗(c)
nk with prob.

1, for all nodes n, c ∈ N , k ∈ Kn and all the subsets

Ψn ⊆ Kn, such that:

b
∗∗(c)
nk ≥ 0, b∗∗(c)cn = 0, b∗∗(c)nn = 0, for n 6= c, (9)

∑

k:k∈Kn

b
∗∗(c)
kn + λ(c)

n ≤
∑

k:k∈Kn

b
∗∗(c)
nk , for n 6= c, (10)

b
∗∗(c)
nk = α∗∗(c)

n

∑

Ψn:Ψn⊆Kn

qrepn,Ψn
θ
∗∗(c)
nk (Ψn), (11)
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where α
∗∗(c)
n is the probability that node n decides to transmit

a packet of commodity c in each timeslot; qrepn,Ψn
is the

probability that Ψn is the successful receiver set for a packet

transmitted by node n with REP; θ
∗∗(c)
nk (Ψn) is the conditional

probability that node n forwards a packet of commodity c to

node k, given that the successful receiver set is Ψn.

In Theorem 1, the REP transmission scheme is used in
Policy∗∗ belonging to the class of stationary randomized

policy, under which each node n uses a fixed probability
to choose each commodity to transmit in each timeslot (the
transmission decision) and a fixed probability to forward the
decoded packet to each successful receiver (the forwarding
decision). The superscript ∗∗ of a variable indicates that the
value of the variable is determined under Policy∗∗; in the later
part of the paper, we use a similar notational convention for
the variables specified by other specific policies. The detailed
proof of Theorem 1 is given in Ref. [15].

Theorem 1 demonstrates the fact that throughput optimality
among all possible policies with REP can be achieved within
the class of stationary randomized policies with single-copy
routing. Although directly obtaining the parameters for the
stationary randomized policy is generally difficult due to the
geometric complexity of the network, the characterization
shown in Theorem 1 is useful in the performance analysis
of DIVBAR.

In our work, an analogous statement can be made to
characterize the RMIA network capacity region:

Theorem 2. For a network satisfying Assumption 1, the RMIA

network capacity region ΛRMIA under Assumption 2 consists

of all the exogenous time average input rate matrices (λ
(c)
n ),

for each of which there exists a stationary randomized policy

(with RMIA), denoted as Policy∗, that chooses probability

α
∗(c)
n , θ

∗(c)
nk (Ωn) and forms the time average flow rate taking

value b
∗(c)
nk with prob. 1, for all nodes n, c ∈ N , k ∈ Kn and

all the nonempty subsets Ωn ⊆ Kn, such that:

b
∗(c)
nk ≥ 0, b∗(c)cn = 0, b∗(c)nn = 0, for n 6= c, (12)
∑

k:k∈Kn

b
∗(c)
kn + λ(c)

n ≤
∑

k:k∈Kn

b
∗(c)
nk , for n 6= c, (13)

b
∗(c)
nk = α∗(c)

n βrmia
n

∑

Ωn:Ωn⊆Kn,Ωn 6=∅

qrmia
n,Ωn

θ
∗(c)
nk (Ωn), (14)

where α
∗(c)
n is the probability that node n decides to transmit

a packet of commodity c in each timeslot; βrmia
n is the inverse

value of the expected epoch length for node n;6 qrmia
n,Ωn

is the

probability that Ωn is the first successful receiver set in each

epoch for node n; θ
∗(c)
nk (Ωn) is the conditional probability that

node n forwards a packet of commodity c to node k, given that

the first successful receiver set is Ωn.

The detailed proof of Theorem 2 consists of a necessity
part and a sufficiency part, which are shown in Appendix C
and Appendix D, respectively. The necessity part is proven by
showing that the given constraints (12)-(14) are necessary for

6With Assumption 1, the expectation of the epoch length for each node
exists.

network stability; the sufficiency part is proven by showing
that strong stability is achieved under Policy∗ with the input
rate matrix (λ

(c)
n ) interior to ΛRMIA.

Similar to Theorem 1 characterizing the REP network ca-
pacity region, Theorem 2 demonstrates the fact that, assuming
single-packet-copy routing, throughput optimality among all
possible policies with RMIA can be achieved within the class
of stationary randomized policies, which can be used for the
theoretical analysis of DIVBAR-RMIA and DIVBAR-FMIA.

B. Network capacity region: RMIA versus REP

In contrast to REP, RMIA potentially increases the success
probability of a transmission attempt over each link in the net-
work by using the pre-accumulated information. Therefore, for
each transmitting node, the set of successful receivers can be
enlarged by applying RMIA instead of REP (possibly enlarged
from an empty set to a non-empty set), and correspondingly,
a positive supportable average flow increase can be obtained
over each outgoing link. Specifically, when a node n transmits
a copy of a packet, if using RMIA, the first successful receiver
set is Ωn ⊆ Kn in the first-decoding timeslot τ , while if
using REP with the same channel realizations, the successful
receiver set in timeslot τ is Ψn ⊆ Kn instead, and we have
Ψn ⊆ Ωn. Based on these facts, we define qrep,rmia

n,Ψn,Ωn
as the

probability that the first successful receiver set for node n is
Ωn in the first-decoding timeslot of an epoch with RMIA,
while the successful receiver set for node n in the same
timeslot is Ψn with REP. qrep,rmia

n,Ψn,Ωn
is used in the proof of the

following theorem showing that the RMIA network capacity
region covers the REP network capacity region:

Theorem 3. For a network satisfying Assumption 1 and any

input rate matrix (λ
(c)
n ) ∈ ΛREP, there exists a stationary

randomized policy with RMIA satisfying Assumption 2 that can

stably support (λ
(c)
n ), which indicates that ΛREP ⊆ ΛRMIA.

The detailed proof is in Appendix E.
With Theorem 3, given a non-zero input rate matrix (λ

(c)
n ) ∈

ΛREP stably supported by Policy∗∗ with REP, we can fur-
ther quantitatively characterize the (time average) input rate
increase that can be guaranteed to support by using RMIA
instead of REP over a simple path ln0,c0 from a source node n0

to a destination node c0, along which a positive time average
flow has been formed under Policy∗∗.7 This characterization
is summarized as the following theorem:

Theorem 4. For a network satisfying Assumption 1, if an input

rate matrix (λ
(c)
n ) ∈ ΛREP has a positive entry λ

(c0)
n0 , where

(n0, c0) is a source-destination pair, then there exists an input

rate matrix (λ′(c)
n ) (ln0,c0) ∈ ΛRMIA, such that its (n, c)th

entry satisfies

λ′
n (ln0,c0) =

{

λ
(c0)
n0 + δ

(c0)
ln0,c0

, if n = n0, c = c0

λ
(c)
n , otherwise

. (15)

7A path having a positive time average flow under a stationary randomized
policy is defined as the path, on which each link has a positive time average
flow rate (with prob. 1) under the policy.
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In (15), we have δ
(c0)
ln0,c0

∆
= min(n,k)∈ln0,c0

{δ
(c0)
nk }, in which

δ
(c0)
nk =















































α
∗∗(c0)
n βrmia

n

(

∑

Ωn:k∈Ωn

qrep,rmia
n,∅,Ωn

+
∑

Ωn:{k,pln0,c0
(n)}⊆Ωn

qrep,rmia
n,{pln0,c0

(n)},Ωn





, if n 6= n0,

α
∗∗(c0)
n0 βrmia

n0

∑

Ωn0 :k∈Ωn0

qrep,rmia
n0,∅,Ωn0

, if n = n0,

(16)
where pln0,c0

(n) is the predecessor node of node n on path

ln0,c0 .

The intuition of Theorem 4 is based on characterizing the
flow increase over a link (n, k) on path ln0,c0 : in the first-
decoding timeslots (with RMIA) when Ψn = ∅ or Ψn =
{pln0,c0

(n)} with REP, while Ωn is nonempty and k ∈ Ωn

or {k, pln0,c0
(n)} ⊆ Ωn with RMIA, then the transmitting

node n retains the packet in these timeslots with REP,8 while
it can forward the packet to node k with RMIA. Therefore,
a time average flow increase can be obtained on link (n, k).
The detailed proof is shown in Appendix F.

With the result of Theorem 4, it immediately follows that
the RMIA network capacity region is strictly larger than the
REP network capacity region under certain mild assumptions:

Corollary 1. For a network satisfying Assumption 1, the

RMIA network capacity region ΛRMIA under Assumption 2

is strictly larger than the REP network capacity region ΛREP,

i.e., ΛRMIA ⊃ ΛREP.

Corollary 1 demonstrates that the network has the potential
of supporting larger input data rates by using RMIA instead
of using REP, and its proof is given in Appendix G.

IV. DIVERSITY BACKPRESSURE ROUTING ALGORITHMS

WITH MUTUAL INFORMATION ACCUMULATION

In this section, we propose two routing algorithms using the
MIA technique: DIVBAR-RMIA and DIVBAR-FMIA, which
respectively use the RMIA and FMIA transmission schemes,
in order to further enhance the throughput performance in
comparison with the traditional DIVBAR algorithm with the
REP transmission scheme in [15].

A. Diversity Backpressure Routing with Renewal Mutual In-

formation Accumulation (DIVBAR-RMIA)

We summarize the implementation of the DIVBAR-RMIA
algorithm at each node n for its ith epoch in the following
steps, where the variables with the notation form x̂ are
specified by DIVBAR-RMIA:

1) In the starting timeslot ûn,i of each epoch i for the
transmitting node n, node n observes the CPQ backlog

8Because the time average packet flow over path ln0,c0 is positive under
the policy with REP, the policy with REP can be assumed to assign zero
forwarding probability on the reverse link (n, pln0,c0

(n)); otherwise, a time
average flow loop will be formed between node n and node pln0,c0

(n),
which can be eliminated without affecting the net flow value.

Q̂
(c)
k (t) of each commodity c ∈ N at each of its potential

receivers k ∈ Kn. With its own CPQ backlogs Q̂
(c)
n (t),

node n computes the differential backlog coefficient

Ŵ
(c)
nk (ûn,i) as follows:

Ŵ
(c)
nk (ûn,i) = max

{

Q̂(c)
n (ûn,i)− Q̂

(c)
k (ûn,i) , 0

}

. (17)

2) For each commodity c, the (receiving) nodes in Kn are
ranked according to their differential backlog coefficients
sorted in descending order. Define R̂

high,(c)
nk (ûn,i) and

R̂
low,(c)
nk (ûn,i) respectively as the set of the nodes in

Kn with higher and lower ranks than node k ∈ Kn

in timeslot ûn,i. Define ϕ̂
(c)
nk (i) as the probability that,

in a first decoding timeslot, node k ∈ Kn belongs
to the first successful receiver set, while the nodes in
R̂

high,(c)
nk (ûn,i) do not successfully decode, i.e, node k

has the highest priority among the successful receivers in
the first successful receiver set.

3) Define ĉn (i) as the optimal commodity that maximizes
the following backpressure metric:

∑

k:k∈Kn

Ŵ
(c)
nk (ûn,i) ϕ̂

(c)
nk (i). (18)

Define Ξ̂n (i) as the corresponding maximum value:

Ξ̂n (i) =
∑

k:k∈Kn

Ŵ
(ĉn(i))
nk (ûn,i) ϕ̂

(ĉn(i))
nk (i). (19)

4) If Ξ̂n (i) > 0, node n chooses a packet stored at the
head of its CPQ of commodity ĉn (i) to transmit for the
epoch i: node n keeps transmitting a copy of packet of
commodity ĉn (i) with the MIA technique in a contiguous
sequence of timeslots starting from timeslot ûn,i to a
timeslot (the first-decoding timeslot), in which one or
more nodes in Kn firstly accumulate enough partial
information and decode the packet (this can be detected
by checking the ACK/NACK feedbacks in each timeslot);
else, node n transmits a null packet for epoch i with the
same procedure representing a silent epoch.

5) In the first-decoding timeslot (after the data transmission
period in this timeslot), the forwarding decision is made:

• If the transmitted packet is not null, node n finds the
successful receiver k̂ (i) with the largest differential
backlog coefficient Ŵ

(ĉn(i))

nk̂(i)
(ûn,i) and checks the

coefficient’s value. If Ŵ
(ĉn(i))

nk̂(i)
(ûn,i) > 0, node n

shifts the forwarding responsibility to node k̂(i),
while other successful receivers discard their copies
of the packet; else, node n retains the forwarding re-
sponsibility, while all the successful receivers discard
their copies of the packets.

• If the transmitted packet is null, each successful
receiver discards its copy of the null packet.

6) By the end of the first-decoding timeslot, all the partial
information accumulated at the nodes in Kn is cleared.

In step 3) of the above summary of the DIVBAR-RMIA
algorithm, ϕ̂(c)

nk (i) can be computed with the knowledge of
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the average CSI:

ϕ̂
(cn)
nk (i) =

∑∞

m=1

[

F
(m−1)
Rnk

(H0)− F
(m)
Rnk

(H0)
]

×
∏

j:j∈R̂
high,(c)
nk

(un,i)

F
(m)
Rnj

(H0)
∏

j:j∈R̂
low,(c)
nk

(un,i)

F
(m−1)
Rnj

(H0).

(20)

Based on the assumption of using orthogonal channels for
transmissions to each receiving node, the DIVBAR-RMIA
algorithm is a distributed algorithm, where each node n makes
local scheduling and routing decisions based on the CPQ
backlog information of itself and of its neighbor nodes in
Kn and the average channel state information of its outgoing
links. Moreover, as shown in (19), a key feature of DIVBAR-
RMIA is that each local transmission decision is made for
an epoch, which consists of random number of timeslots
determined by the channel realizations of the outgoing links
of the transmitting node.

B. Diversity Backpressure Routing with Full Mutual Informa-

tion Accumulation (DIVBAR-FMIA)

In contrast with DIVBAR-RMIA, DIVBAR-FMIA does not
have the “regular” renewal operations by the end of each
epoch but retains the partial information of each packet in
the network until the packet has been delivered to the desti-
nation. Retaining the partial information can further facilitate
the decoding of this packet if the retaining receiving node
overhears the transmissions of this packet later, possibly from
a different transmitting node. In this paper, we propose a
version of the DIVBAR-FMIA algorithm that is associated
with the DIVBAR-RMIA algorithm, such that it is set to
perform in synchronized epochs with DIVBAR-RMIA, i.e.,
each node makes the forwarding decisions under DVIBAR-
FMIA in the same timeslots as when the node makes the
forwarding decisions if under DIVBAR-RMIA.

Define ˆ̂pn,i as the packet being transmitted by node n in its

ith epoch under DIVBAR-FMIA. Let ˆ̂
Iprek (ˆ̂pn,i, τ) represent

the amount of pre-accumulated partial information of packet
ˆ̂pn,i before timeslot τ stored at node k. Additionally, define
ˆ̂
Irmia
nk (ˆ̂pn,i, ˆ̂un,i, τ) as the amount of partial information of

packet ˆ̂pn,i purely accumulated by the transmissions in the
time interval from timeslot ˆ̂un,i to the timeslot τ , where ˆ̂un,i

is the index of the starting timeslot of epoch i for node n under
DIVBAR-FMIA, and where τ is the index of an arbitrary
timeslot in epoch i for node n. Then the DIVBAR-FMIA
algorithm summarization for each node n and each epoch i
is as follows, where we denote its specified variables in the
form of ˆ̂x:

1) At the beginning of timeslot ˆ̂un,i, node n executes the
similar steps as Step 1) - 4) of DIVBAR-RMIA based on

observations of ˆ̂
Q(ˆ̂un,i) and the ˆ̂ϕ

(cn)
nk (i), where k ∈ Kn,

in order to make the transmission decisions on whether
to choose a packet pn,i stored at the head of its CPQ of
commodity ˆ̂cn (i) to transmit for the epoch i.

2) On the receiver side, in each timeslot τ of epoch i,
each receiving node sends two feedback signals back

to node n after the data transmission period in times-
lot τ : (ACK/NACK)FMIA and (ACK/NACK)RMIA.
(ACK/NACK)FMIA indicates whether node k suc-
cessfully decodes the packet with the FMIA trans-

mission scheme, which is true if ˆ̂
Iprek (ˆ̂pn,i, ûn,i) +

ˆ̂
Irmia
nk (ˆ̂pn,i, ˆ̂un,i, τ) ≥ H0; (ACK/NACK)RMIA indicates

whether the partial information accumulated at node k
purely during the current epoch had been enough to
decode if using the RMIA transmission scheme, which

would be true if ˆ̂
Irmia
nk (ˆ̂pn,i, ˆ̂un,i, τ) ≥ H0.

3) After gathering all the (ACK/NACK)FMIA and
(ACK/NACK)RMIA feedbacks from the receiving nodes
in timeslot τ , node n firstly checks (ACK/NACK)RMIA

feedbacks to confirm if there is any receiving node whose

accumulated information ˆ̂
Irmia
nk (ˆ̂pn,i, ˆ̂un,i, τ) exceeds H0.

If not, node n will keep transmitting in timeslot τ + 1;
otherwise, timeslot τ is the ending timeslot of epoch i
for node n (also the first-decoding timeslot with RMIA),
and the forwarding decision will be made:

• If the transmitted packet is not null, node n further
checks the gathered (ACK/NACK)FMIA feedbacks,
based on which node n finds the successful receiver
ˆ̂
k (i) with the largest differential backlog coefficient
ˆ̂
W

(ˆ̂cn(i))

n
ˆ̂
k(i) (ˆ̂un,i) and checks the coefficient’s value. If

ˆ̂
W

(ˆ̂cn(i))

n
ˆ̂
k(i) (ˆ̂un,i) > 0, node n shifts the forwarding

responsibility to node ˆ̂
k(i), while other successful

receivers discard their copies of the packet; else,
node n retains the forwarding responsibility, while
all the successful receivers discard their copies of
the packets.

• If the transmitted packet is null, each successful
receiver discards its copy of the null packet, and
each unsuccessful receiver also discards the partial
information of the null packet they have received.

Additional to the steps in each epoch shown above, after
the packet ˆ̂pn,i is delivered to its destination, all the partial
information of packet ˆ̂pn,i stored in the network is cleared in
order to free up the memory.

According to above algorithm summary, DIVBAR-FMIA
can also be a distributed algorithm, because each node n
makes local scheduling and routing decisions based on the
CPQ backlog information of itself and of its neighbor nodes in
Kn and the average channel state information of its outgoing
links. However, the practical implementation for DIVBAR-
FMIA is more challenging than that for DIVBAR-RMIA, for
instances, efficiently accumulating the partial information of
the same packet from two different transmitting nodes requires
extra coordination in the implementation of the rateless codes;
a notification signal has to be broadcast to inform the nodes
in the network to clear the partial information of a delivered
packet; extra storage and efficient retrieving mechanism for the
retained partial information in the PPQs have to be properly
set up. In the later part of the paper, we assume these
implementation issues have been properly done for DIVBAR-
FMIA and analyze its throughput performance.
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V. PERFORMANCE ANALYSIS

In this section, the performances of DIVBAR-RMIA and
DIVBAR-FMIA are evaluated. As will be shown in Theorem
5, we first prove the throughput optimality of DIVBAR-RMIA
among all possible algorithms with RMIA. Secondly, as will
be shown in Theorem 6 and Corollary 3, we prove that
DIVBAR-FMIA’s throughput performance is at least as good
as DIVBAR-RMIA’s.

A. Throughput optimality of DIVBAR-RMIA among all possi-

ble policies with RMIA

In this subsection, our goal is to analyze the throughput
performance of the DIVBAR-RMIA algorithm and show that it
is throughput optimal among all possible policies with RMIA.

To begin with, we give an initial analysis of the backpressure
metric under DIVBAR-RMIA over a single epoch. Consider
a policy under which each epoch consists of contiguous
timeslots. Define Zn (i,Q (τ)) as the following metric over
the ith epoch under such a policy:

Zn

(

i, Q̂ (τ)
)

=
∑

c

un,i+1−1
∑

τ ′=un,i

∑

k:k∈Kn

b
(c)
nk (τ

′)
[

Q(c)
n (τ)−Q

(c)
k (τ)

]

,

(21)
where un,i is the starting timeslot of the ith epoch. Let P rep-
resent the set of policies with RMIA consisting of DIVBAR-
RMIA and all the policies having synchronous epochs with
DIVBAR-RMIA. With the definitions of Zn (i,Q (τ)) and P ,
we propose Lemma 3 as follows to demonstrate the origin
of the backpressure metric formulation (18) in step 3) of the
DIVBAR-RMIA algorithm summary.

Lemma 3. The metric E{Zn(i, Q̂ (un,i))
∣

∣

∣ Q̂ (un,i)} for each

node n under an arbitrary policy within policy set P is upper

bounded by Ξ̂n (i), and this upper bound is achieved under

the DIVBAR-RMIA algorithm.

Lemma 3 characterizes the key feature of DIVBAR-RMIA
over a single epoch, and its proof is given in Appendix H.

Based on Lemma 3, the following theorem shows that strong
stability can be achieved by DIVBAR-RMIA for any input
rate matrix in the interior of ΛRMIA, which demonstrates that
DIVBAR-RMIA is a throughput optimal algorithm among all
the algorithms with the RMIA transmission scheme.

Theorem 5. For a network satisfying Assumption 1, DIVBAR-

RMIA is throughput optimal among the algorithms with RMIA:

for an exogenous input rate matrix (λ
(c)
n ), if there exists an

ε > 0 satisfying (λ
(c)
n + ε) ∈ ΛRMIA, then there exists an

integer D > 0, such that the mean time average CPQ backlog

of the whole network can be upper bounded as follows:

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

n,c

E

{

Q̂(c)
n (τ)

}

≤
2 [B (D) + C (D)]

ε
, (22)

when implementing the DIVBAR-RMIA algorithm, where

B (D)
∆
=ND

[

1 + (N +Amax)
2
]

; C (D)
∆
=4ND (N +Amax + 1).

The proof of Theorem 5 is given in Appendix I. The proof
follows the strategy of comparing the upper bounds (contain-
ing the backpressure metrics) formulated for the D-timeslot
Lyapunov drift under the DIVBAR-RMIA algorithm and under
the stationary randomized policy with RMIA (Policy∗) that
stably supports (λ

(c)
n ). Note that the success of transmitting

a packet with RMIA depends on the total amount of par-
tial information transmitted over possible multiple timeslots,
which motivates the necessity of analyzing the queue length
evolvements under DIVBAR-RMIA over multi-timeslot inter-
vals. The proof of Theorem 5 shows the existence of a finite
interval length D, such that, by doing Lyapunov drift analysis
over every D-timeslot interval, the mean time average CPQ
backlog under DIVBAR-RMIA can be upper bounded within
the interior of ΛRMIA.9

With Theorem 5, we claim the following corollary:

Corollary 2. For a network satisfying Assumption 1, the

throughput achieved by DIVBAR-RMIA is strictly larger than

that achieved by DIVBAR (with REP).

Proof: According to Theorem 5, ΛRMIA is the set of
input rate matrices that can be supported by DIVBAR-RMIA.
Moreover, reviewing the result of Corollary 1, ΛRMIA is
strictly larger than ΛREP given Assumption 1. Thus, with the
same assumption, DIVBAR-RMIA can achieve strictly larger
throughput than DIVBAR, since ΛREP is the set of input rate
matrices that can be supported by DIVBAR (see [15]).

B. Throughput performance of DIVBAR-FMIA

Since the proposed DIVBAR-FMIA algorithm is set to have
synchronous epochs with DIVBAR-RMIA, with the help of
the pre-accumulated information in the receiving nodes by the
beginning of each epoch, the successful receiver set at the end
of each epoch under DIVBAR-FMIA should include the first
successful receiver set under DIVBAR-RMIA. This intuition
indicates that the throughput performance of DIVBAR-FMIA
should be at least as good as DIVBAR-RMIA, and yields the
following theorem:

Theorem 6. For a network satisfying Assumption 1, for any

(λ
(c)
n ) interior to ΛRMIA, DIVBAR-FMIA yields the strong

stability of the network: there exists an integer D > 0, such

that the mean time average CPQ backlog of the whole network

can be upper bounded as follows:

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

n,c

E

{

ˆ̂
Q(c)

n (τ)
}

≤
2 [B (D) + C (D)]

ε
, (23)

when implementing the DIVBAR-FMIA algorithm, where the

positive ε satisfies: (λ
(c)
n + ε) ∈ ΛRMIA.

The proof of Theorem 6 is given in Appendix J, and the
proof strategy is similar to that of Theorem 5.

9Comparing with the mean time average backlog upper bound expression
for DIVBAR with REP, which has a similar structure and can be computed
through 1-timeslot Lyapunov drift analysis (see [15]), for a (λ

(c)
n ) within

ΛREP, the upper bound in (22) could be smaller because of the existence
of a possibly larger ε value in the denominator due to ΛRMIA ⊃ ΛREP

(according to Corollary 1), or could be larger because of different expressions
in the numerator.
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Note that retaining the partial information does not affect
the stability of the network under DIVBAR-FMIA either,
assuming that the retained partial information of a packet is
cleared once the packet is delivered. To explain the reason,
consider that in each timeslot τ , a packet stored at a node
n must have at most N − 1 pieces of partial information
respectively stored in the PPQs at the other N − 1 nodes, and
the backlog of each piece of partial information is less than 1
(in unit of packet). Therefore, the total PPQ backlog in timeslot

τ is no more than (N − 1)
∑

n,c
ˆ̂
Q

(c)
n (τ), and according to

(23) in Theorem 6, the mean time average PPQ backlog is
also upper bounded.

Moreover, based on Theorem 6, we can further compare
DIVBAR-FMIA and DIVBAR-RMIA in the throughput per-
formance by showing the following corollary:

Corollary 3. For a network satisfying Assumption 1, the

throughput performance of DIVBAR-FMIA is at least as good

as DIVBAR-RMIA.

Proof: According to Theorem 6, DIVBAR-FMIA is able
to support any input rate matrix within ΛRMIA, which indicates
that any input rate matrix that can be stably supported by
DIVBAR-RMIA can also be stably supported by DIVBAR-
FMIA, i.e., the throughput performance of DIVBAR-FMIA is
at least as good as DIVBAR-RMIA.

VI. SIMULATIONS

Example simulations over 106 timeslots are carried out in
the ad-hoc wireless network shown in Fig. 2. All the links
in the network are independent non-interfering links, each of
which is subject to Rayleigh fading (independent among links
and timeslots), while the average channel states are static. The
number on each link represents the mean SNR value (linear
scale) over that link; the time average exogenous input rates
λ
(9)
1 and λ

(10)
2 are set to be the same.

A. Throughput performance

Simulations are conducted comparing throughput perfor-
mance of the three algorithms: DIVBAR-FMIA, DIVBAR-
RMIA, and traditional DIVBAR (with REP). Fig. 3 shows
the time average occupancy (total time average backlog in
the network measured in normalized-units) vs. exogenous time
average input rate measured in normalized-units/timeslot. Here
a normalized-unit has to be long enough (contain sufficient
number of bits) to allow the application of a capacity achieving
code. The maximum supportable throughput corresponds to
the exogenous time average input rate at which the occupancy
goes towards very large values (due to a finite simulation time,
it does not approach infinity in our simulations). As is shown
in the figure, the throughput under DIVBAR-RMIA algorithm
is smaller than that of DIVBAR-FMIA; the throughput under
both algorithms are larger than that of the regular DIVBAR
algorithm. These observations are in line with the theoretical
analysis.

The simulation of the throughput comparison is carried
out under different packet entropy conditions. The entropy
contained in each packet is denoted by H0 as is shown in
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Fig. 3. Throughput performance comparison among DIVBAR-RMIA,
DIVBAR-FMIA and DIVBAR algorithms with different packet lengths

the figure. When H0 = 1 normalized-unit, Fig. 3 shows that
the throughput under the three algorithms are nearly identical.
This phenomenon is caused by the fact that the packet length
is generally small compared to the transmission ability of the
links in the network. Therefore nodes in the network can
usually achieve a successful transmission over a link at the
first attempt, which results in that using the MIA technique in
the transmissions has little benefit. However, as H0 increases
to 2 normalized-units, the success probability in a single
attempt decreases. Nodes under regular DIVBAR increase the
chance of successful transmission just through trying more
times, while DIVBAR-FMIA and DIVBAR-RMIA accumulate
information in each attempt, which will facilitate the future
transmissions. Thus the throughput difference between DI-
VBAR and DIVBAR-(R)FMIA becomes obvious.

B. Delay performance

Although the DIVBAR-RMIA and DIVBAR-FMIA algo-
rithms are designed to maximize throughput, we here also pro-
vided simulations comparing the delay performance. Specif-
ically, DIVBAR, DIVBAR-RMIA and DIVBAR-FMIA are
simulated with H0 = 2 normalized-units respectively with
λ
(9)
1 = λ

(10)
2 = 0.3 normalized-unit/slot and λ

(9)
1 = λ

(10)
2 =
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Fig. 4. The delay performance DIVBAR, DIVBAR-RMIA and DIVBAR-
FMIA: a) Cumulative distribution of delay with λ

(9)
1 = λ

(10)
2 = 0.3

normalized-unit/slot; b) Cumulative distribution of delay with λ
(9)
1 =

λ
(10)
2 = 0.9 normalized-unit/slot

0.9 normalized-unit/slot (both average input rates are within
the REP network capacity region). Curves showing the em-
pirical cumulative distribution of the packets’ delay over 106

timeslots are plotted in Fig. 4.
In the case of λ

(9)
1 = λ

(10)
2 = 0.3, which is a low traffic

case for the simulation network, it can be seen from Fig. 4 a)
that the packets’ delay under DIVBAR is statistically smaller
than the packets’ delay under DIVBAR-RMIA and DIVBAR-
FMIA. This is caused by the fact that, under DIVBAR-RMIA
or DIVBAR-FMIA, choosing the packet for the persistent
transmissions in an epoch and making the forwarding decision
for the packet are based on the backlog state observed at the
beginning timeslot of the epoch, which may become outdated
during the epoch. The outdated backlog observation can affect
the delay performance on average and can be a dominant factor
in affecting delay performance in the low traffic case if the

epochs in the network are statistically long enough. In contrast,
under DIVBAR, the transmitting decisions and the forwarding
decisions are made in every timeslot based on current backlog
state observations.

However, when setting average input rates as λ
(9)
1 =

λ
(10)
2 = 0.9 normalized-unit/slot, as is shown in Fig. 4 b), the

packets’ delay under DIVBAR-RMIA and DIVBAR-FMIA is
statistically smaller than the delay under DIVBAR. The reason
is that, in the case of heavier traffic, the transmission en-
hancement due to implementing the MIA technique becomes
the dominant factor of influencing delay, while the outdated
backlog observations under DIVBAR-RMIA and DIVBAR-
FMIA are less impactful.

Moreover, as is shown in Fig. 4 a) and b), the statistical
delay performance difference between DIVBAR-RMIA and
DIVBAR-FMIA becomes larger as λ

(9)
1 and λ

(10)
2 increase

from 0.3 to 0.9, which is consistent with the intuition that
the retained partial information facilitate the transmissions
more in heavy traffic case. Furthermore, another interesting
phenomenon to notice is that, under DIVBAR-RMIA and
DIVBAR-FMIA, the average delay with λ

(9)
1 = λ

(10)
2 = 0.9

normalized-unit/slot is smaller than the average delay with
λ
(9)
1 = λ

(10)
2 = 0.3 normalized-unit/slot. This can be explained

based on the facts that backpressure based algorithms route
the packets in inappropriate directions before enough packets
build up to suggest the efficient paths, and that the building
up process of the packets becomes faster when the exogenous
input rates increase, which is another significant factor of
influencing the delay performance.

VII. CONCLUSION

In this paper, we proposed two distributed routing al-
gorithms: DIVBAR-RMIA and DIVBAR-FMIA, which ex-
ploit the MIA technique for the routing in multi-hop, multi-
commodity wireless ad-hoc networks with unreliable and non-
precisely predictable links. After setting up a proper net-
work model, including designing the queue structure of each
network node to implement the two proposed transmission
schemes: RMIA and FMIA, and the working diagram within
each timeslot, we analyze the throughput potential of the
network with RMIA by characterizing and analyzing the
RMIA network capacity region. We prove that, with certain
mild assumptions consistent with practical wireless scenarios,
it covers and extends the network capacity region with the REP
transmission scheme which is traditionally used. Moreover,
under the same assumptions, the proposed DIVBAR-RMIA
algorithm is proven to be throughput optimal among all
the policies with RMIA, and the proposed DIVBAR-FMIA
has throughput performance at least as good as DIVBAR-
RMIA. Therefore, the proposed two algorithms have superior
throughput performance compared to the original DIVBAR
with REP. This fact is confirmed by simulations.

APPENDIX A
PROOF OF LEMMA 1

After taking expectation over Q (t0) on both sides of (4) and
doing concatenated summations over t0 = 0, 1, 2, · · · , t − 1,



12

it follows that

1

dt

t+d−1
∑

τ=t

∑

n,c

E

{

(

Q(c)
n (τ)

)2
}

−
1

dt

d−1
∑

τ=0

∑

n,c

E

{

(

Q(c)
n (τ)

)2
}

≤ B0 (d)− ε
1

t

t−1
∑

τ=0

∑

n,c

E

{

Q(c)
n (τ)

}

. (24)

Letting t → ∞ yields

0 = − lim sup
t→∞

1

dt

d−1
∑

τ=0

∑

n,c

E

{

(

Q(c)
n (τ)

)2
}

≤ B0 (d)− ε lim sup
t→∞

1

t

t−1
∑

τ=0

∑

n,c

E

{

Q(c)
n (τ)

}

, (25)

and then strong stability is achieved shown as (5).

APPENDIX B
THE PROOF OF LEMMA 2

Let fRnk
(x) represent the pdf (probability density function)

of Rnk (τ). With Assumption 1, we have

F
(m)
Rnk

(H0) =

H0
∫

0

F
(m−1)
Rnk

(H0 − x) fRnk
(x) dx

< F
(m−1)
Rnk

(H0)FRnk
(H0) , for m ≥ 2, (26)

and then recursively applying the above inequality yields (7).
By including the case of FRnk

(H0) < F
(0)
Rnk

(H0) = 1, we
further get (8).

APPENDIX C
PROOF OF THE NECESSITY PART OF THEOREM 2

Consider a network satisfying Assumption 1 with input rate
matrix (λ

(c)
n ). Suppose there is a single-copy routing policy

with RMIA that stably supports (λ
(c)
n ).

Define a unit as a copy of a packet. Two units are said to be
distinct if they are copies of different original packets. When
a packet is successfully transmitted from one node to another,
we say that the original unit is retained in the transmitting
node while a copy of the unit is created in the receiving node.
After the forwarding decision is made, only one of the non-
distinct units is kept, either at the transmitting node or at one
of the successful receiving nodes.

Let A(c)
n (t) represent the total number of the distinct units

of commodity c that exogenously arrive at node n during the
first t timeslots. Define Y

(c)
n (t) as the total number of distinct

units with source node n and commodity c that are delivered
to the destination up to time t. Because of the assumption that
the policy is rate stable, for any node n and commodity c, the
time average delivery rate is equal to the time average input
rate:

lim
t→∞

Y
(c)
n (t)

t
= lim

t→∞

A
(c)
n (t)

t
= λ(c)

n with prob. 1. (27)

Let U
(c)
j (t) be the set of distinct units that reach their

destination c from the source node j during the first t timeslots.

Define G
(c)
nk (t) to be the total number of units of commodity

c within the set
⋃

j:j∈N U
(c)
j (t) that are forwarded from node

n to node k within the first t timeslots. Then for node n and
commodity c, it follows that

Y (c)
n (t)+

∑

k:k∈Kn

G
(c)
kn (t) =

∑

k:k∈Kn

G
(c)
nk (t), for n 6= c. (28)

Now define the following variables for all nodes n ∈ N , k ∈
Kn and all commodities c ∈ N :

• α
(c)
n (t): the number of times node n decides to transmit

the units of commodity c in the first t timeslots.
• β

(c)
n (t): the number of epochs for transmitting units of

commodity c from node n with RMIA in the first t
timeslots.

• q
(c)
n,Ωn

(t): the number of times units of commodity c sent
by node n with RMIA are first-decoded by the set of
nodes Ωn ⊆ Kn (Ωn 6= ∅) in the first t timeslots.

• θ
(c)
nk (Ωn, t): the number of times the units of commodity
c in

⋃

j:j∈N U
(c)
j (t) are forwarded from node n to node

k in the first t timeslots, given that the first successful
receiver set is Ωn.

Then we have

G
(c)
nk (t)

t
=
α
(c)
n (t)

t

β
(c)
n (t)

α
(c)
n (t)

∑

Ωn:Ωn⊆Kn,Ωn 6=∅

q
(c)
n,Ωn

(t)

β
(c)
n (t)

θ
(c)
nk (Ωn, t)

q
(c)
n,Ωn

(t)
,

(29)
where we define 0/0

∆
= 0 for terms in the above equation.

Note that for all t, we have:

0 ≤
α
(c)
n (t)

t
≤ 1; 0 ≤

θ
(c)
nk (Ωn, t)

q
(c)
n,Ωn

(t)
≤ 1, Ωn 6= ∅; (30)

0 ≤
G

(c)
nk (t)

t
≤ 1; G(c)

cn (t) = G(c)
nn (t) = 0. (31)

Since the constraints defined in (30) and (31) show closed
and bounded regions with finite dimensions, a subsequence
of timeslots {tl} must exists, over which the individual terms
in (30) and (31) converge to constant values α

∗(c)
n , θ∗(c)nk (Ωn)

and b
∗(c)
nk , respectively.

Moreover, let T (c)
n (i) represent the length of the ith epoch

for node n to transmit units of commodity c with RMIA. First
note that, with Assumption 1, the expectation of T (c)

n (i) exists
because

E

{

T (c)
n (i)

}

=

∞
∑

m=1

∏

j:j∈Kn

F
(m−1)
nj (H0)

<
1

∏

j:j∈Kn

[

1− FRnj
(H0)

] < ∞, (32)

where the inequality holds true due to Lemma 2. Additionally,
β
(c)
n (t) and α

(c)
n (t) have the following relation:

β(c)
n (t)
∑

i=1

T (c)
n (i) ≤ α(c)

n (t) <

β(c)
n (t)+1
∑

i=1

T (c)
n (i). (33)

With RMIA, T (c)
n (i) is i.i.d. across epochs. If α∗(c)

n > 0, with
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(33) and according to the law of large number, we have

lim
tl→∞

β
(c)
n (tl)

α
(c)
n (tl)

=
1

E

{

T
(c)
n (i)

}

∆
= βrmia

n with prob. 1. (34)

Here the notation βrmia
n having a superscript “rmia” but no

superscript “c” because its value is only determined by the
the RMIA transmission scheme and channel states.

Furthermore, with RMIA, the first successful receiver set
for each node n across epochs are i.i.d.. Then we get by the
law of large numbers that, if α∗(c)

n > 0,

lim
tl→∞

q
(c)
n,Ωn

(tl)

β
(c)
n (tl)

= qrmia
n,Ωn

with prob. 1, Ωn 6= ∅, (35)

where qrmia
n,Ωn

is the probability that Ωn is the first successful
receiver set with RMIA. The value of qrmia

n,Ωn
is also only

determined by the the RMIA transmission scheme and channel
states

Suppose under a stationary randomized policy, denoted as
Policy∗, each node n decides to transmit a unit of commodity
c in every timeslot with a fixed probability α

∗(c)
n and chooses

node k ∈ Kn to get the forwarding responsibility with a fixed
conditional probability θ

∗(c)
nk (Ωn), given that the set of nodes

Ωn firstly decode the unit (if k /∈ Ωn, θ∗(c)nk (Ωn) has to be set
to 0). According to the law of large numbers and (34), (35), the
values α∗(c)

n , θ∗(c)nk (Ωn) and b
∗(c)
nk are the limit values over the

whole timeslot sequence {t}, i.e., the converging subsequence
{tl} becomes {t}, and therefore it follows that

lim
t→∞

α
∗(c)
n (t)

t
= α∗(c)

n with prob. 1, (36)

lim
t→∞

θ
∗(c)
nk (Ωn, t)

q
(c)
n,Ωn

(t)
= θ

∗(c)
nk (Ωn) with prob. 1, Ωn 6= ∅,

(37)

lim
t→∞

G
∗(c)
nk (t)

t
= b

∗(c)
nk with prob. 1. (38)

With (31) and (38), we have

b
∗(c)
nk ≥ 0, b∗(c)cn = 0, b∗(c)nn = 0, for n 6= c.

Furthermore, dividing both sides of (28) by t and using the
results of (27) and (38) yields:

λ(c)
n +

∑

k:k∈Kn

b
∗(c)
kn =

∑

k:k∈Kn

b
∗(c)
nk , for n 6= c.

Likewise, if α∗
n(c) > 0, according to (34)-(38), taking the limit

t → ∞ in (29) yields:

b
∗(c)
nk = α∗(c)

n βrmia
n

∑

Ωn:Ωn⊆Kn,Ωn 6=∅

qrmia
n,Ωn

θ
∗(c)
nk (Ωn).

Note that the above equation also holds true trivially if α∗(c)
n =

0; βrmia
n and qrmia

n,Ωn
do not have policy-specifying mark because

their values only depend on the average channel state.

Thus, for any
(

λ
(c)
n

)

∈ ΛRMIA, a stabilizing stationary
randomized policy satisfies (12)-(14).

APPENDIX D
PROOF OF THE SUFFICIENCY PART OF THEOREM 2

For a network satisfying Assumption 1 with input rate
matrix (λ

(c)
n ), suppose there exists a stationary randomized

policy, denoted as Policy∗, and a constant ε > 0, such that
Policy∗ and (λ

(c)
n + ε) satisfy (12)-(14), which yields:

∑

k:k∈Kn

b
∗(c)
nk −

∑

k:k∈Kn

b
∗(c)
kn − λ(c)

n ≥ ε, for n 6= c (39)

Start by extending the queueing dynamic (1) to a t-timeslot
queueing relation under Policy∗:

Q∗(c)
n (t0 + t) ≤ max

{

Q∗(c)
n (t0)−

t0+t−1
∑

τ=t0

∑

k:k∈Kn

b
(∗c)
nk (τ), 0

}

+

t0+t−1
∑

τ=t0

∑

k:k∈Kn

b
∗(c)
kn (τ) +

t0+t−1
∑

τ=t0

a(c)n (τ), (40)

where t0 ≥ 0; t ≥ 1. By squaring both sides of (40) and taking
expectations on each term given Q∗ (t0), we upper bound the
t-timeslot Lyapunov drift as follows:

∆∗
t (Q

∗ (t0))

≤B (t)− 2
∑

n,c

Q∗(c)
n (t0)E

{

∑

k:k∈Kn

1

t

t0+t−1
∑

τ=t0

b
∗(c)
nk (τ)

−
∑

k:k∈Kn

1

t

t0+t−1
∑

τ=t0

b
∗(c)
kn (τ)−

1

t

t0+t−1
∑

τ=t0

a(c)n (τ)

∣

∣

∣

∣

∣

Q∗ (t0)

}

=B (t)− 2
∑

n,c

Q∗(c)
n (t0)

{[

λ(c)
n −

1

t

t0+t−1
∑

τ=t0

E

{

a(c)n (τ)
}

]

+
∑

k:k∈Kn

[

1

t

t0+t−1
∑

τ=t0

E

{

b
∗(c)
nk (τ)

}

− b
∗(c)
nk

]

−
∑

k:k∈Kn

[

1

t

t0+t−1
∑

τ=t0

E

{

b
∗(c)
kn (τ)

}

− b
∗(c)
kn

]

+

[

∑

k:k∈Kn

b
∗(c)
nk −

∑

k:k∈Kn

b
∗(c)
kn −λ(c)

n

]}

, (41)

where the sum of squared terms formed by the flow rate and
input rate has been replaced by a constant B (t):

1

t

∑

n,c







[

t0+t−1
∑

τ=t0

∑

k:k∈Kn

b
∗(c)
nk (τ)

]2

+

[

t0+t−1
∑

τ=t0

∑

k:k∈Kn

b
∗(c)
kn (τ) +

t0+t−1
∑

τ=t0

a(c)n (τ)

]2






≤ Nt
[

1 + (N +Amax)
2
]

∆
= B (t) , (42)

and Q∗ (t0) is dropped from the expectation condition because
Policy∗ makes decisions independent from backlog state.

To prepare for the later proof, we propose the following
lemma:

Lemma 4. For link (n, k) in a network satisfying Assumption

1, under a stationary randomized policy with RMIA, for any



14

given ε > 0, there exists an integer D
(c)
nk > 0, such that, for

all t0 ≥ 0 (t0 is integer), whenever t ≥ D
(c)
nk , the mean time

average of b
(c)
nk (τ) over the interval from timeslot t0 to timeslot

t0 + t− 1 satisfies:
∣

∣

∣

∣

∣

1

t

t0+t−1
∑

τ=t0

E

{

b
(c)
nk (τ)

}

− b
(c)
nk

∣

∣

∣

∣

∣

≤ ε. (43)

The proof of Lemma 4 is shown in Appendix K and is non-
trivial due to the fact that b(c)nk (τ) is not i.i.d. across timeslots
with RMIA and the requirement that the value of D

(c)
nk does

not depend on t0. Based on Lemma 4, there exists an integer
D

∗(c)
nk > 0, such that, for all t0 ≥ 0, whenever t ≥ D

∗(c)
nk , we

have
∣

∣

∣

∣

∣

1

t

t0+t−1
∑

τ=t0

E

{

b
∗(c)
nk (τ)

}

− b
∗(c)
nk

∣

∣

∣

∣

∣

≤
ε

4N
, (44)

Choose t = D∗ ∆
= max{D

∗(c)
nk : n, c ∈ N , k ∈ Kn}, con-

sider the fact 1
t

∑t0+t−1
τ=t0

E{a
(c)
nk (τ)} = λ

(c)
n and plug (39) and

(44) into (41), it follows that

∆∗
D∗ (Q∗ (t0)) ≤ B (D∗)− ε

∑

n,c

Q∗(c)
n (t0), (45)

Note that (45) satisfies the condition required by Lemma 1,
and therefore the strong stability can be achieved:

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

n,c

E

{

Q(c)
n (τ)

}

≤
B (D∗)

ε
. (46)

APPENDIX E
PROOF OF THEOREM 3

For a network with an input rate matrix (λ
(c)
n ) ∈ ΛREP,

according to Theorem 1, there exists a stationary randomized
policy Policy∗∗ that stably supports (λ

(c)
n ) by forming a

flow rate matrix (b
∗∗(c)
nk ) with REP satisfying (9)-(11). If

the network satisfies Assumption 1, an intuitive proof is to
construct another stationary randomized policy, denoted as
Policy1, that forms the same flow rate matrix (b

∗∗(c)
nk ) but

with RMIA.
Note that, when a node n transmits a unit, with RMIA, Ωn

is the first successful receiver set in the first-decoding timeslot,
while in the same timeslot, with REP, the successful receiver
set would be Ψn instead (Ψn could be empty indicating no
successful decoding). Then, due to MIA, we must have Ψn ⊆
Ωn. Moreover, for node n, the decoding timeslots with REP is
a subset of the first-decoding timeslots with RMIA. Base on
these facts, define the following variables for all nodes n ∈ N
and all commodities c ∈ N :

• q
rep,(c)
n,Ψn

(t): the number of times units of commodity c
transmitted by node n with REP are decoded by the set
of nodes Ψn ⊆ Kn in the first t timeslots.

• q
rep,rmia,(c)
n,Ψn,Ωn

(t): the number of times units of commodity
c transmitted by node n with RMIA are first-decoded
by the set of Ωn (Ωn 6= ∅, Ωn ⊆ Kn) in the first
t timeslots, while in the same timeslots of transmitting
units of commodity c, would be decoded by the set of
nodes Ψn with REP.

Then we have

q
rep,(c)
n,Ψn

(t) =
∑

Ωn:Ψn⊆Ωn

q
rep,rmia,(c)
n,Ψn,Ωn

(t), if Ψn 6= ∅. (47)

According to the law of large numbers, let α(c)
n (t) → ∞, we

have

lim
α

(c)
n (t)→∞

q
rep,(c)
n,Ψn

(t)

α
(c)
n (t)

= qrepn,Ψn
, with prob. 1, if Ψn 6= ∅.

(48)
Likewise, since the occurrences of Ψn (with REP) and Ωn

(with RMIA) in the first-decoding timeslots for node n are
i.i.d. across different epochs (with RMIA), then according to
the law of large numbers, we have

lim
α

(c)
n (t)→∞

∑

Ωn:Ψn⊆Ωn

q
rep,rmia,(c)
n,Ψn,Ωn

(t)

α
(c)
n (t)

= lim
α

(c)
n (t)→∞

∑

Ωn:Ψn⊆Ωn

β
rmia,(c)
n (t)

α
(c)
n (t)

q
rep,rmia,(c)
n,Ψn,Ωn

(t)

β
rmia,(c)
n (t)

=
∑

Ωn:Ψn⊆Ωn

βrmia
n qrep,rmia

n,Ψn,Ωn
, with prob. 1, if Ψ 6= ∅. (49)

Divide both sides of (47) by α
(c)
n (t) and plug (48) and (49)

in, we get

qrepn,Ψn
=

∑

Ωn:Ψn⊆Ωn

βrmia
n qrep,rmia

n,Ψn,Ωn
, if Ψn 6= ∅. (50)

Consider the flow rate under Policy∗∗ shown as (11) in
Theorem 1. Plugging (50) into (11) yields:

b
∗∗(c)
nk = α∗∗(c)

n

∑

Ψn:k∈Ψn

∑

Ωn:Ψn⊆Ωn

βrmia
n qrep,rmia

n,Ψn,Ωn
θ
∗∗(c)
nk (Ψn)

= α∗∗(c)
n βrmia

n

∑

Ωn:k∈Ωn

qrmia
n,Ωn

θ
1(c)
nk (Ωn), (51)

where we define

θ
1(c)
nk (Ωn)

∆
=

∑

Ψn:Ψn⊆Ωn,k∈Ψn

qrep,rmia
n,Ψn,Ωn

qrmia
n,Ωn

θ
∗∗(c)
nk (Ψn). (52)

In (52), qrmia
n,Ωn

is positive due to Assumption 1 and Lemma 2:

qrmia
n,Ωn

=

∞
∑

m=1

∏

k:k∈Ωn

[

F
(m−1)
Rnk

(H0)− F
(m)
Rnk

(H0)
]

×
∏

k:k/∈Ωn,k∈Kn

F
(m)
Rnk

(H0) > 0. (53)

Comparing (51) with (14) in Theorem 2, if there is a stationary
randomized policy Policy1 with RMIA, under which each
node n transmits a unit of commodity c with probability
α
∗∗(c)
n in each timeslot, and forwards the decoded unit to

node k ∈ Kn with probability θ
1(c)
nk (Ωn), given that the first

successful receiver set is Ωn, the same flow rate (b
∗∗(c)
nk ) will

be formed. Then the remaining part of the proof is to show
that the θ

1(c)
nk (Ωn) in (52) are valid probability values.

To validate the θ
1(c)
nk (Ωn), first consider the definitions of
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q
rmia,(c)
n,Ωn

(t) and q
rep,rmia,(c)
n,Ψn,Ωn

(t), and we have

q
rmia,(c)
n,Ωn

(t) =
∑

Ψn:Ψ⊆Ωn

q
rep,rmia,(c)
n,Ψn,Ωn

(t), Ωn 6= ∅. (54)

Divide both sides of (54) by β
rmia,(c)
n (t) and let βrmia,(c)

n (t) →
∞, by applying the law of large number, we have

qrmia
n,Ωn

=
∑

Ψn:Ψn⊆Ωn

qrep,rmia
n,Ψn,Ωn

, Ωn 6= ∅. (55)

By plugging (55) into (52), we check the validity of
{θ

1(c)
nk (Ωn) : k ∈ Knt} as follows:

∑

k:k∈Ωn

θ
1(c)
nk (Ωn)=

∑

Ψn:Ψn⊆Ωn,Ψn 6=∅

qrep,rmia
n,Ψn,Ωn

qrmia
n,Ωn

∑

k:k∈Ψn

θ
∗∗(c)
nk (Ψn)

≤

∑

Ψn:Ψn⊆Ωn,Ψn 6=∅

qrep,rmia
n,Ψn,Ωn

∑

Ψn:Ψn⊆Ωn,Ψn 6=∅

qrep,rmia
n,Ψn,Ωn

+ qrep,rmia
n,∅,Ωn

≤1, Ωn 6= ∅.

(56)

Thus, for (λ(c)
n ) ∈ ΛREP that can be supported by Policy∗∗

with REP, there also exists a Policy1 with RMIA that forms
the same flow rate matrix (b

∗∗(c)
nk ) and stably supports (λ

(c)
n ),

i.e., ΛREP ⊆ ΛRMIA.

APPENDIX F
PROOF OF THEOREM 4

Suppose (λ
(c)
n ) ∈ ΛREP has a positive entry λ

(c0)
n0 and can

be stably supported by a stationary randomized policy with
REP: Policy∗∗, which forms a flow path ln0,c0 on which each
link has a positive time average flow rate. The goal of the proof
is to construct a policy with RMIA that can stably support the
input rate matrix (λ

′(c)
n )(ln0,c0).

Based on the proof of Theorem 3, there exists a stationary
randomized policy Policy1 with RMIA that can also stably
support (λ

(c)
n ) and forms the flow rate matrix (b

∗∗(c)
nk ). For

link (n, k) on path ln0,c0 , regardless of flow conservation
constraints, the time average flow rate of commodity c0 over
link (n, k) has a increase potential based on b

∗∗(c0)
nk formed by

Policy1 with RMIA, by increasing the forwarding probability
from θ

1(c0)
nk (Ωn) to θ

1′(c0)
nk (Ωn) if k ∈ Ωn:

θ
1′(c0)
nk (Ωn)

∆
=



















θ
1(c0)
nk (Ωn) +

[

qrep,rmia
n,∅,Ωn

+ qrep,rmia

n,{pln0,c0
(n)},Ωn

]/

qrmia
n,Ωn

,

if n 6= n0;

θ
1(c0)
n0k

(Ωn) + qrep,rmia
n0,∅,Ωn0

/

qrmia
n0,Ωn0

, if n = n0.

(57)

Consequently, if we maintain the forwarding probabilities to
the nodes in Ωn other than node k, i.e. if ∃j ∈ Ωn but j 6= k,
then θ

1′(c0)
nj (Ωn) = θ

1(c0)
nj (Ωn), the potential time average

flow increase on link (n, k), denoted as δ(c0)nk , can be obtained,
as is shown in (16) in the theorem statement. Here we check
the validity of the forwarding probabilities {θ1

′(c0)
nj (Ωn) : j ∈

Kn} as follows:

• If k /∈ Ωn, we have
∑

j:j∈Kn
θ
1′(c0)
nj (Ωn) =

∑

j:j∈Kn
θ
1(c0)
nj (Ωn) ≤ 1 according to (56).

• If n 6= n0 and
{

k, pln0,c0
(n)
}

⊆ Ωn, note that the
time average flow on link (pln0,c0

(n), n) is positive under
Policy∗∗ (see Footnote 7), and we can assume that the
time average flow rate on the reverse link (n, pln0,c0

(n))

is zero under Policy∗∗, i.e., θ
∗∗(c0)
npln0,c0

(n) (Ψn) = 0, if

pln0,c0
(n) ∈ Ψn. Then it follows that
∑

j:j∈Ωn

θ
1′(c0)
nj (Ωn)

=
∑

j:j∈Ωn,j 6=pln0,c0
(n)

∑

Ψn:Ψn⊆Ωn,j∈Ψn

qrep,rmia
n,Ψn,Ωn

θ
∗∗(c0)
nj (Ψn)

qrmia
n,Ωn

+
qrep,rmia
n,∅,Ωn

+ qrep,rmia

n,{pln0,c0
(n)},Ωn

qrmia
n,Ωn

=
∑

Ψn:Ψn⊆Ωn,Ψn 6=∅,Ψn 6={pln0,c0
(n)}

qrep,rmia
n,Ψn,Ωn

qrmia
n,Ωn

×
∑

j:j∈Ψn,j 6=pln0,c0
(n)

θ
∗∗(c0)
nj (Ψn)

+
qrep,rmia
n,∅,Ωn

+ qrep,rmia

n,{pln0,c0
(n)},Ωn

qrmia
n,Ωn

≤

∑

Ψn:Ψn⊆Ωn

qrep,rmia
n,Ψn,Ωn

qrmia
n,Ωn

= 1. (58)

• If n = n0 and k ∈ Ωn, or if n 6= n0 and pln0,c0
(n) /∈

Ωn, we also guarantee that
∑

j:j∈Kn0
θ
1′(c)
n0j

(Ωn0) ≤ 1
with the similar derivation in (58) but without the term
qrep,rmia

n,{pln0,c0
(n)},Ωn

.

With the time average flow rate increase potential δ(c0)nk on
each link (n, k) ∈ ln0,c0 , let δ

(c0)
ln0,c0

represent the minimum
flow increase potential among the links on path ln0,c0 , i.e.,

δ
(c0)
ln0,c0

∆
= min(n,k)∈ln0,c0

{δ
(c0)
nk }. Therefore, for commodity

c0, each link (n, k) along path ln0,c0 can support a flow
rate increase of δ

(c0)
ln0,c0

just by assigning a new forwarding

probability θ
2(c0)
nk (Ωn) such that, i.e., ∃ ξ

(c0)
nk ∈ [0, 1],

θ
2(c0)
nk (Ωn)

∆
=



















θ
1(c0)
nk (Ωn)+

[

qrep,rmia
n,∅,Ωn

+qrep,rmia

n,{pln0,c0
(n)},Ωn

]

ξ
(c0)
nk

/

qrmia
n,Ωn

,

if n 6= n0;

θ
1(c0)
n0k

(Ωn) + qrep,rmia
n0,∅,Ωn0

ξ
(c0)
n0k

/

qrmia
n0,Ωn0

, if n = n0;

(59)

δ
(c0)
ln0,c0

= δ
(c0)
nk ξ

(c0)
nk . (60)

Then we construct a stationary randomized policy with RMIA,
denoted as Policy2, under which each node n chooses to
transmit a unit of commodity c with probability α

∗∗(c)
n in

each timeslot and forwards the decoded unit to node k ∈ Ωn

with probability θ
2(c)
nk (Ωn). The θ

2(c)
nk (Ωn) satisfy (59) for
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(n, k) ∈ ln0,c0 and c = c0; θ
2(c)
nk (Ωn) = θ

1(c)
nk (Ωn) for

(n, k) /∈ ln0,c0 or c 6= c0. Correspondingly, under Policy2,
the time average flow rate over each link can be expressed as
follows:

b
2(c0)
nk = b

∗∗(c0)
nk + δ

(c0)
ln0,c0

, for (n, k) ∈ ln0,c0 ; (61a)

b
2(c)
nk = b

∗∗(c)
nk , for (n, k) /∈ ln0,c0 or c 6= c0. (61b)

Following from (61), the flow rate matrix (b
2(c)
nk ) under

Policy2 and the input rate matrix (λ
′(c)
n ) (ln0,c0) satisfy (12)-

(14) in Theorem 2, and therefore (λ
′(c)
n ) (ln0,c0) ∈ ΛRMIA.

APPENDIX G
PROOF OF COROLLARY 1

Consider an arbitrary input rate matrix (λ
(c)
n ) within ΛREP

having a positive entry λ
(c0)
n0 . According to Theorem 4, there

exists a simple path ln0,c0 with positive time average flow such

that corresponding (λ
′(c)
n ) (ln0,c0) belongs to ΛRMIA. For each

link (n, k) on path ln0,c0 , we have

δ
(c0)
nk ≥ ηrep,rmia

nk α∗∗(c0)
n βrmia

n

∑

Ωn:Ωn⊆Kn,Ωn 6=∅

qrmia
n,Ωn

θ
1(c)
nk (Ωn)

= ηrep,rmia
nk b

∗∗(c0)
nk , (62)

where

ηrep,rmia
nk

∆
=

∑

Ωn:k∈Ωn

qrep,rmia
n,∅,Ωn

/

∑

Ωn:Ωn⊆Kn,Ωn 6=∅

qrmia
n,Ωn

. (63)

The value of ηrep,rmia
nk only depends on the average channel

state and is positive:

qrep,rmia
n,Ψn,Ωn

=

∞
∑

m=1

∏

k:k∈Ψn

F
(m−1)
Rnk

(H0) [1− FRnk
(H0)] ·

∏

k:k/∈Ωn

F
(m)
Rnk

(H0)

·
∏

k:k∈Ωn\Ψn

[

F
(m−1)
Rnk

(H0)FRnk
(H0)− F

(m)
Rnk

(H0)
]

>0, for Ψn ⊆ Ωn. (64)

Define b∗∗ln0,c0
= min{b

∗∗(c0)
nk : (n, k) ∈ ln0,c0} for each path

ln0,c0 ; let L∗∗
n0,c0 represent the set of simple paths with positive

flow from node n0 to node c0 under Policy∗∗; define l∗∗max
n0,c0 as

the simple path with the maximum b∗∗ln0,c0
among the paths in

L∗∗
n0,c0 ; let L represent the number of geometric simple paths

from node n0 to node c0. Then, for each link (n, k) ∈ l∗∗max
n0,c0 ,

we have

bl∗∗max
n0,c0

≥
1

L

∑

ln0,c0 :ln0,c0∈L∗∗

n0,c0

b∗∗ln0,c0
≥

1

L
λ(c0)
n0

. (65)

Define ηrep,rmia
min = min

{

ηrep,rmia
nk : n ∈ N , k ∈ Kn

}

, it fol-
lows from (62) and (65) that, for path l∗∗max

n0,c0 , we have

δ
(c0)
l∗∗max
n0,c0

≥ ηrep,rmia
min bl∗∗max

n0,c0
≥

1

L
ηrep,rmia
min λ(c0)

n0
, (66)

where ηrep,rmia
min

/

L is a positive constant value that only
depends on the average channel state and geometric topology

of the network. Thus, according to (66), ΛRMIA extends from
ΛREP by at least a factor of ηrep,rmia

min

/

L in the (n0, c0)th
dimension. Combing with Theorem 3, ΛRMIA is strictly larger
than ΛREP.

APPENDIX H
PROOF OF LEMMA 3

Firstly, according to (21), the expectation of Zn(i, Q̂ (un,i)),
given the backlog state Q̂ (un,i), can be upper bounded as
follows:

E

{

Zn

(

i, Q̂ (un,i)
)∣

∣

∣ Q̂ (un,i)
}

(a)

≤
∑

c

E







un,i+1−1
∑

τ=un,i

∑

k:k∈Kn

b
(c)
nk (τ) Ŵ

(c)
nk (un,i)

∣

∣

∣

∣

∣

∣

Q̂ (un,i)







(b)
=
∑

c

E

{

∑

k:k∈Kn

b
(c)
nk (un,i+1 − 1) Ŵ

(c)
nk (un,i)

∣

∣

∣

∣

∣

Q̂ (un,i)

}

,

(67)

In (67), the upper bound condition of (a) is achieved by the
following activity: b

(c)
nk (τ) = 0 when W

(c)
nk (un,i) = 0, i.e.,

node n never forwards a packet of commodity c to node
k ∈ Kn if node k has non-positive differential backlog (zero
differential backlog coefficient) of commodity c, which is
consistent with the description in step 5) of the algorithm
summary of DIVBAR-RMIA; the equality (b) in (67) holds
true because of the fact that, for any policy in P , b(c)nk (τ) = 0
when un,i ≤ τ < un,i+1 − 1.

Then we define the following variables for the policies with
RMIA in P :

• µ
(c)
n (i): the variable that takes value 1 if node n decides

to transmit a unit of commodity c in the ith epoch, and
takes value 0 otherwise.

• µn (i): the variable that takes value 1 if node n decides to
transmit a unit having a commodity (the unit is not null)
in the ith epoch, and takes value 0 if node n decides to
transmit a null packet.

• XP
nk (i): the random variable that takes value 1 if node

k ∈ Kn is in the first successful receiver set of the ith
epoch for node n under a policy in P , and takes value 0
otherwise. Given the policy set P , the value of XP

nk (i)
only depends on the channel realizations in epoch i for
node n.

• 1̂
(c)
nk (i): the indicator variable that takes value 1 if and

only if XP
nk (i) = 1 and XP

nj (i) = 0 for all j ∈

R̂
high,(c)
nk (un,i).

Considering the fact that XP
nk (i)µ

(c)
n (i) ∈ {0, 1} and

b
(c)
nk (un,i+1 − 1) = b

(c)
nk (un,i+1 − 1)XP

nk (i)µ
(c)
n (i), it fol-

lows from (67) that

E

{

Zn

(

i, Q̂ (un,i)
)∣

∣

∣ Q̂ (un,i)
}

≤
∑

c

E

{

µ(c)
n (i)

∑

k:k∈Kn

b
(c)
nk (un,i+1 − 1)

× XP
nk (i) Ŵ

(c)
nk (un,i)

∣

∣

∣ Q̂ (un,i)
}
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(a)

≤
∑

c

E

{

max
k:k∈Kn

{

XP
nk (i) Ŵ

(c)
nk (un,i)

}

∣

∣

∣

∣

Q̂ (un,i) , µ
(c)
n (i)=1

}

× E

{

µ(c)
n (i)

∣

∣

∣
Q̂ (un,i)

}

(68)

The inequality (a) in (68) holds true due to the fact that
∑

k:k∈Kn
b
(c)
nk (un,i+1 − 1) ≤ 1; (a) becomes an equality with

the following activity: b(c)nk (un,i+1 − 1) = 1 when node k has
the largest positive term XP

nk (i)W
(c)
nk (i), i.e., node n forwards

a packet to node k only if node k is the successful receiver
with the largest positive differential backlog of commodity c,
which is consistent with step 5) of the algorithm summary of
DIVBAR-RMIA.

Moreover, note that 1̂(c)nk(i) takes value 1 with probability
ϕ
(c)
nk (i), given the backlog state Q̂ (un,i) and that node n

decides to transmit a unit of commodity c in epoch i, and
therefore, we have with the definition of 1̂(c)nk(i) that

E

{

max
k:k∈Kn

{

XP
nk (i) Ŵ

(c)
nk (un,i)

}

∣

∣

∣

∣

Q̂ (un,i) , µ
(c)
n (i) = 1

}

= E

{

∑

k:k∈Kn

Ŵ
(c)
nk (un,i) 1̂

(c)
nk (i)

∣

∣

∣

∣

∣

Q̂ (un,i) , µ
(c)
n (i) = 1

}

=
∑

k:k∈Kn

Ŵ
(c)
nk (un,i) ϕ̂

(c)
nk (i), (69)

which is the backpressure metric (18) in step 3) of its algorithm
summary. Then plugging (69) into (68) yields :

E

{

Zn

(

i, Q̂ (un,i)
)∣

∣

∣ Q̂ (un,i)
}

(a)

≤
∑

k∈Kn

Ŵ
(ĉn(i))
nk (un,i) ϕ̂

(ĉn(i))
nk (i)

∑

c

E

{

µ(c)
n (i)

∣

∣

∣ Q̂ (un,i)
}

=Ξ̂n (i)E
{

µn (i)| Q̂ (un,i)
} (b)

≤ Ξ̂n (i) . (70)

The upper bound condition of (a) in (70) is achieved by
the following activity: node n only transmits a unit whose
belonging commodity maximizes the metric of (18) if it
decides to transmit a packet having a commodity; the upper
bound condition of (b) in (70) can be achieved by the following
activity: node n transmits a unit having a commodity in the
ith epoch if and only if Ξ̂n (i) > 0. These two upper bounds
achieving activities are consistent with step 4) in the algorithm
description of DIVBAR-RMIA.

In summary, the upper bound achieving conditions of
(67), (68), and (70) prove that DIVBAR-RMIA maximizes
E{Zn(i, Q̂ (un,i))

∣

∣

∣ Q̂ (un,i)} among the policies in P .

APPENDIX I
PROOF OF THEOREM 5

Reviewing Theorem 2, for a network satisfying Assumption
1 with an input rate matrix (λ

(c)
n ) interior to ΛRMIA, there

exists a stationary randomized policy with RMIA: Policy∗,
under which the t-timeslot average Lyapunov drift satisfies
the condition (4) given in Lemma 1, and therefore the strong
stability can be achieved.

In this proof, the goal is to show that the t-timeslot
Lyapunov drift under DIVBAR-RMIA, denoted as ˆPolicy,

satisfies the similar condition. Correspondingly, given the ε

satisfying (λ
(c)
n + ε) ∈ ΛRMIA, the main proof strategy is

to compare the upper bounds of t-timeslot Lyapunov drifts
respectively under ˆPolicy and under a policy that is a “mod-
ified version” of Policy∗ and is denoted as Policy′

∗. Here
Policy′

∗ is defined as follows: it is the same as ˆPolicy from

timeslot 0 to timeslot t0 − 1; starting from timeslot t0, it

makes the stationary randomized transmitting and forwarding

decisions with the same probabilities as Policy∗, while the

transmissions with RMIA does not use the pre-accumulated

partial information before timeslot t0.10

Start by doing some manipulations on the t-timeslot queue-
ing relation similar as (40)-(41) under an arbitrary policy, the
t-timeslot average Lyapunov drift starting at any timeslot t0
is upper bounded as follows:

∆t (Q (t0)) ≤ B (t) +
2

t

∑

n,c

Q(c)
n (t0)

t0+t−1
∑

τ=t0

E

{

a(c)n (τ)
}

− 2
∑

n

E

{

Zn (Q (t0))|
t0+t−1
t0

∣

∣

∣
Q (t0)

}

, (71)

where, the summation metric Zn (Q (t0))
∣

∣

t0+t−1
t0 represents

the following expression:

Zn (Q (t0))
∣

∣

t0+t−1
t0

∆
=

1

t

t0+t−1
∑

τ=t0

∑

c

∑

k:k∈Kn

b
(c)
nk (τ)

[

Q(c)
n (t0)−Q

(c)
k (t0)

]

. (72)

The comparison between ˆPolicy and Policy′
∗ focuses on

comparing the term
∑

n E{Zn (Q (t0))
∣

∣

t0+t−1
t0

∣

∣Q (t0)} on
the right hand side of (71). In this paper, we call this term
as the key metric.

In order to facilitate the comparison between ˆPolicy and
Policy′

∗, an intermediate policy ˜Policy is introduced: it is the

same as ˆPolicy from timeslot 0 to timeslot t0 − 1; in timeslot

t0, each node n makes a transmitting decision based on

Q̂ (t0) using the same strategy as under ˆPolicy, and according

to this transmission decision, either keeps transmitting units

of the chosen commodity with RMIA or keeps silent (by

transmitting the null units) from then on but without using

the pre-accumulated partial information before timeslot t0; in

each first-decoding timeslot for node n since timeslot t0, node

n makes the forwarding decision based on Q̂ (t0) using the
same strategy as ˆPolicy.

The proof proceeds into two steps: comparing ˜Policy and
Policy′∗ as is shown Subsection I-A and comparing ˆPolicy
and P̃ olicy as is shown in Subsection I-B.

10Note that Policy′
∗ in principle does not belong the RMIA policy

space we discussed in this paper, because using no pre-accumulated partial
information before timeslot t0 is equivalent to making forwarding decisions
and renewal operations for all commodities in timeslot t0 − 1 and starting a
new epoch in timeslot t0, while timeslot t0 − 1 may not be a first-decoding
timeslot for all commodities. But it is convenient to introduce Policy′

∗

as an intermediate policy in the proof, because starting from timeslot t0,
it is statistically the same as Policy∗ starting from timeslot 0 but with
initial backlog state Q̂n (t0). Likewise, the intermediate policies ˜Policy and

˜Policy
∗

, which will be introduced later, do not belong to the RMIA policy
space for the same reason but are introduced to facilitate the proof.
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A. Comparison on the key metric between ˜Policy and

Policy′
∗

In this part of proof, the key metrics under ˜Policy and
Policy′

∗ are analyzed on the interval from timeslot t0 to
timeslot t0 + t − 1. In order to facilitate the comparison, we
further introduce an intermediate policy: ˜Policy∗, which is
defined as follows: it is the same as ˆPolicy from timeslot

0 to timeslot t0 − 1; starting from timeslot t0, each node n
makes the same transmitting decision as under Policy′

∗
in

each timeslot, according to which node n chooses units to

transmit with RMIA but without using the pre-accumulated

partial information before timeslot t0; in each first-decoding

timeslot for node n since timeslot t0, node n makes the

forwarding decision based on Q̂ (t0) using the same strategy
as ˜Policy.

To prepare the later proof, we count the first epoch of
commodity c that ends in or after timeslot t0 as epoch 1 of
commodity c. Then we define the following variables:

• α
(c)
n (t0, t): the number of times node n decides to

transmit the units of commodity c from timeslot t0 to
timeslot t0 + t− 1.

• β
(c)
n (t0, t): the number of epochs for transmitting units

of commodity c from node n with RMIA that end within
the interval from timeslot t0 to timeslot t0 + t− 1.

• τ
(c)
j : the index of the subsequence of timeslots which are

used to transmit units of commodity c.
• u

(c)
n,i: the index of the starting timeslot of epoch i of

commodity c in {τ
(c)
j }.

• X
(c)
nk (i): the random variable that takes value 1 if node

k ∈ Kn is in the first successful receiver set of epoch i
of commodity c with RMIA and takes value 0 otherwise.

• Z
(c)
n (i,Q (τ)): the metric over the epoch i of commodity

c for node n under a policy based on a CPQ backlog state
in timeslot τ shown as

Z(c)
n (i,Q (τ))

∆
=

u
(c)
n,i+1−1
∑

j=u
(c)
n,i

∑

k:k∈Kn

b
(c)
nk

(

τ
(c)
j

) [

Q(c)
n (τ)−Q

(c)
k (τ)

]

. (73)

1) Comparing the key metrics under ˜Policy∗ and

Policy′
∗
: Because ˜Policy∗ uses the same forwarding strategy

as ˆPolicy since timeslot t0, and Policy′
∗ has synchronous

epochs as ˜Policy∗, resembling the derivations in the proof of
Lemma 3 (see Appendix H), it follows that

∑

n

E

{

Z̃∗
n

(

Q̂ (t0)
)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

Q̂ (t0)

}

=
∑

n

∑

c

E







1

t

β′∗(c)
n (t0,t)
∑

i=1

max
k:k∈Kn

{

X ′∗(c)
nk (i) Ŵ

(c)
nk (t0)

}

∣

∣

∣

∣

∣

∣

Q̂ (t0)







≥
∑

n

∑

c

E







1

t

β′∗(c)
n (t0,t)
∑

i=1

Z ′∗(c)
n

(

i, Q̂ (t0)
)

∣

∣

∣

∣

∣

∣

Q̂ (t0)







=
∑

n

E

{

Z ′∗
n

(

Q̂ (t0)
)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

Q̂ (t0)

}

, (74)

where we use the facts that β̃
∗(c)
n (t0, t) = β′∗(c)

n (t0, t),
ũ
∗(c)
n,i = u′∗(c)

n,i and X̃
∗(c)
nk (i) = X ′∗(c)

nk (i).

2) Comparing the key metrics under ˜Policy and ˜Policy∗:

To facilitate the later proof, we first consider the policy set,
denoted as Y , that consists of the policies each of which is
defined as follows: it is the same as ˆPolicy from timeslot 0
to timeslot t0 − 1; from timeslot t0, each node n uses fixed

probabilities to choose commodities to transmit with RMIA

without using the pre-accumulated partial information before

timeslot t0; in each first-decoding timeslot for node n since

timeslot t0, node n makes the forwarding decisions based on

Q̂n (t0) using the same strategy as ˆPolicy. Note that both
˜Policy or ˜Policy

∗
belong to Y .

Under a policy in Y , the key metric can be expressed as
follows:
∑

n

E

{

Zn

(

Q̂ (t0)
)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

Q̂ (t0)

}

=
∑

n

∑

c

E























α
(c)
n (t0, t)

t

1

β
(c)
n (t0,t)

β(c)
n (t0,t)
∑

i=1

Z
(c)
n

(

i, Q̂ (t0)
)

α
(c)
n (t0,t)

β
(c)
n (t0,t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q̂ (t0)























,

(75)

where we define 0/0
∆
= 0 for terms in the above equation.

Since the transmission decisions under a policy in Y are i.i.d.
over timeslots, according to the law of large number, we have

lim
t→∞

α
(c)
n (t0, t)

t
= α(c)

n with prob. 1. (76)

Additionally, since
∑β(c)

n (t0,t)
i=1 T

(c)
n (i) ≤ α

(c)
n (t0, t) <

∑β(c)
n (t0,t)+1

i=1 T
(c)
n (i),11 we have according to the law of large

number, if α(c)
n > 0,

lim
t→∞

α
(c)
n (t0, t)

β
(c)
n (t0, t)

=E

{

T (c)
n (i)

}

=
1

βrmia
n

, with prob. 1. (77)

Moreover, the value of Z
(c)
n (i, Q̂ (t0)) under a policy in Y

only depends on Q̂ (t0) and the channel realizations in epoch
i, therefore Z

(c)
n (i, Q̂ (t0)) is i.i.d. across epochs given Q̂ (t0),

and we have, if α(c)
n > 0,

lim
t→∞

1

β
(c)
n (t0, t)

β(c)
n (t0,t)
∑

i=1

Z(c)
n

(

i, Q̂ (t0)
)

= z(c)n

(

Q̂ (t0)
)

,

with prob. 1, (78)

where z
(c)
n (Q̂ (t0))

∆
= E{Z

(c)
n (i, Q̂ (t0))

∣

∣

∣
Q̂ (t0)}. According

to (75)-(78) and incorporating the trivial case α
(c)
n = 0, it

follows from (75) that

lim
t→∞

∑

n

E

{

Zn

(

Q̂ (t0)
)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

Q̂ (t0)

}

11For any policy in Y , we assume that a forwarding decision is made at
each node n in timeslot t0 − 1, and the epoch 1 (i = 1) of each commodity
for node n starts in or after timeslot t0.
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=
∑

n

∑

c

α(c)
n βrmia

n z(c)n

(

Q̂ (t0)
)

. (79)

With (79), given the ε satisfying (λ
(c)
n + ε) ∈ ΛRMIA, under

a policy in Y , there exists an integer Dy , such that, for all
t0 ≥ 0, whenever t ≥ Dy , we have
∣

∣

∣

∣

∣

∑

n

E

{

Zn

(

Q̂ (t0)
)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

Q̂ (t0)

}

−
∑

n

∑

c

α(c)
n βrmia

n z(c)n

(

Q̂ (t0)
)

∣

∣

∣

∣

∣

≤
ε

16

∑

n,c

Q̂(c)
n (t0).

(80)

Since
∑

c α
(c)
n ≤ 1, we have

∑

n

∑

c

α(c)
n βrmia

n z(c)n

(

Q̂ (t0)
)

≤
∑

n

βrmia
n max

c

{

z(c)n

(

Q̂ (t0)
)}

.

(81)
If defining c̃n = argmax

c
{z

(c)
n (Q̂ (t0))}, (81) becomes an

equality when node n chooses commodity c̃n to transmit
from timeslot t0 on, which is consistent with the strategy of
making transmitting decisions under ˜Policy. Under ˜Policy

and ˜Policy∗, define D̃1
∆
= Dy and D̃∗ ∆

= Dy as the respective

threshold integers. Choose D̃
∆
= max{D̃∗, D̃1}, based on (81)

and (80), we can get, for all t0 ≥ 0, whenever t ≥ D̃,

∑

n

E

{

Z̃n

(

Q̂ (t0)
)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

Q̂ (t0)

}

≥
∑

n

E

{

Z̃∗
n

(

Q̂ (t0)
)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

Q̂ (t0)

}

−
ε

8

∑

n,c

Q̂(c)
n (t0).

(82)

3) Comparing the key metrics under ˜Policy and Policy′
∗
:

In summary, plugging (74) into (82), and it follows that, for
all t0 ≥ 0, whenever t ≥ D̃,
∑

n

E

{

Z̃n

(

Q̂ (t0)
)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

Q̂ (t0)

}

≥
∑

n

E

{

Z ′∗
n

(

Q̂ (t0)
)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

Q̂ (t0)

}

−
ε

8

∑

n,c

Q̂(c)
n (t0).

(83)

B. Comparison on the key metric between ˆPolicy and ˜Policy

Note that each epoch either ˆPolicy or ˜Policy consists of
contiguous timeslots. In this subsection, for a policy, under
which each epoch consists of contiguous timeslots, we count
the first epoch for node n that ends in or after timeslot t0 as
epoch 1 (without specifying the commodity) and denote the
starting timeslot of epoch i as timeslot un,i.

The later proof can be facilitated by introducing another

intermediate but non-causal policy: ˜̃
Policy, which is defined

as follows: it is the same as ˆPolicy from timeslot 0 to timeslot

ûn,1 − 1 at each node n; starting from timeslot ûn,1, node

n keeps transmitting the units of commodity c̃n with RMIA;

in each first-decoding timeslot for node n since timeslot t0,

node n makes the forwarding decision based on Q̂n (t0) using

the same strategy as ˆPolicy (or ˜Policy). Here note that c̃n

is decided based on the value Q̂ (t0), which is formed by
ˆPolicy, and we have un,1 ≤ t0. With this non-causality

feature, ˜̃
Policy is non-realizable but is used to facilitate the

theoretical analysis.

1) Comparison between ˆPolicy and
˜̃Policy: For a policy,

under which each epoch consists of contiguous timeslots,
define Mn (t0, t) as the minimum number of epochs that
covers the time interval [t0, t0 + t− 1], i.e.,

Mn (t0, t)
∆
= min

{

m : un,1 +

m
∑

i=1

Tn (i)− 1 ≥ t0 + t− 1

}

,

(84)
where Tn (i) is defined as the number of timeslots in the ith
epoch for node n. Additionally, as is defined in (21), given

Q̂n (t0),
˜̃Z
(c)
n (i, Q̂ (t0)) is i.i.d. across epochs under ˜̃

Policy,
and we can notate its conditional expectation as follows:

E

{

˜̃Zn

(

i, Q̂ (t0)
)∣

∣

∣ Q̂ (t0)
}

∆
= ˜̃zn

(

Q̂ (t0)
)

. (85)

Incorporating Mn (t0, t) and ˜̃z
(c)
n (Q̂ (t0)), we propose the

following lemma that compares ˆPolicy and ˜̃
Policy:

Lemma 5. For a network satisfying Assumption 1, there exists

a positive integer D̂ such that, for all t0 ≥ 0, whenever t ≥ D̂,
ˆPolicy and

˜̃
Policy satisfy the following relationship given the

backlog state Q̂ (t0):

∑

n

E

{

Ẑn

(

Q̂ (t0)
)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

Q̂ (t0)

}

≥
1

t

∑

n

˜̃zn

(

Q̂ (t0)
)

E

{

˜̃Mn (t0, t)
}

−

[

NC2 (t) + C1 (t) +
ε

8

∑

n,c

Q̂(c)
n (t0)

]

, (86)

where we have C1 (t)
∆
= Nt (N +Amax + 1) and C2 (t)

∆
=

t (N +Amax + 1).

The detailed proof of Lemma 5 is shown in Appendix L.

Note that the metric under ˜̃
Policy on the right hand side of

(86) is not exactly the key metric we defined before but is
more convenient to use for the later derivations.

2) Comparison between
˜̃

Policy and ˜Policy: For epoch

i under ˜̃
Policy and epoch j under ˜Policy, where 1 ≤ i ≤

˜̃Mn (t0, t) and 1 ≤ j ≤ M̃n (t0, t), note that ˜̃Zn(i, Q̂ (t0))
and Z̃n(j, Q̂ (t0)) are identically distributed because of the

i.i.d channel state across timeslots and the fact that ˜̃Policy
and ˜Policy choose the same commodity to transmit in these
two epochs, respectively. Therefore, we get

˜̃zn

(

Q̂ (t0)
)

= z̃n

(

Q̂ (t0)
)

. (87)

On the other hand, under the two policies, since ˜̃un,1 ≤ t0 =
ũn,1, with any channel realization (common for both policies),
we have

˜̃Mn (t0, t) ≥ M̃n (t0, t) . (88)

Resembling part of the proof in Lemma 5 (see Appendix L)
and considering that M̃n (t0, t) ≤ t because T̃n (i) ≥ 1, define
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the following indicator function of integer i = 1, 2, · · · , t
under ˜Policy:

1̃n (i) =

{

1, 1 ≤ i ≤ M̃n (t0, t) ≤ t

0, M̃n (t0, t) < i ≤ t,.
(89)

Consider that Z̃n(i, Q̂ (t0)) and 1̃n (i) are independent because
{Z̃n(i, Q̂ (t0)) : i ≥ 1} are i.i.d. and the value of 1̃n (i) only
depends on T̃n (1) , · · · , T̃n (i− 1). With (87) and (88), we
have the following relationship:

E







M̃n(t0,t)
∑

i=1

Z̃n

(

i, Q̂ (t0)
)

∣

∣

∣

∣

∣

∣

Q̂ (t0)







=

t
∑

i=1

E

{

Z̃n

(

i, Q̂ (t0)
)∣

∣

∣ Q̂ (t0)
}

E
{

1̃n (i)
}

=z̃n

(

Q̂ (t0)
)

E

{

M̃n (t0, t)
}

≤˜̃zn

(

Q̂ (t0)
)

E

{

˜̃Mn (t0, t)
}

, (90)

which completes the comparison between ˜̃
Policy and ˜Policy.

3) Comparison between ˆPolicy and ˜Policy: Plug (90)
back into (86), it follows that, for all t0 ≥ 0, whenever t ≥ D̂2,
we have

∑
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E
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∣
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}
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E







1

t
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)
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∣
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Q̂ (t0)
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
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−

[

NC2 (t) + C1 (t) +
ε

8

∑

n,c

Q̂(c)
n (t0)

]

≥
∑

n

E

{

Z̃n

(

Q̂ (t0)
)∣

∣

∣
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t0

∣

∣

∣

∣

Q̂ (t0)

}

−

[

NC2 (t) + C1 (t) +
ε

8

∑

n,c

Q̂(c)
n (t0)

]

, (91)

which completes the comparison between ˆPolicy and ˜Policy.

C. Strong stability achieved under ˆPolicy

Combining (83) in Subsection I-A and (91) in Subsection
I-B, the comparison on the key backpressure metric between

ˆPolicy and Policy′
∗ is shown as follows: for all t0 ≥ 0,

whenever ∀t ≥ max{D̂, D̃}, we have

∑

n

E
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Ẑn

(

Q̂ (t0)
)∣

∣
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t0+t−1

t0

∣

∣

∣

∣

Q̂ (t0)

}

≥
∑

n

E

{

Z ′∗
n

(
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)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

Q̂ (t0)

}

−

[

NC2 (t) + C1 (t) +
ε

4

∑

n,c

Q̂(c)
n (t0, )

]

. (92)

After plugging (92) back into (71), ∆̂t(Q̂ (t0)) can be

further upper bounded as follows:

∆̂t

(

Q̂ (t0)
)

≤B (t) + 2 [C1 (t) +NC2 (t)]

+
ε

2

∑

n,c

Q̂(c)
n (t0)− 2Υ

(

Q̂ (t0)
)

, (93)

where Υ(Q̂ (t0)) is as follows:

Υ
(

Q̂ (t0)
)

∆
=
∑

n

E

{

Z ′∗
n

(

Q̂ (t0)
)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

Q̂ (t0)

}

−
1

t

∑

n,c

Q̂(c)
n (t0)

t0+t−1
∑

τ=t0

E

{

a(c)n (τ)
}

=
∑

n,c

Q̂(c)
n (t0)

1

t

t0+t−1
∑

τ=t0

E

{

∑

k:k∈Kn

b′
∗(c)
nk (τ)

−
∑

k:k∈Kn

b′
∗(c)
kn (τ)−a(c)n (τ)

}

(94)

Since from timeslot t0, Policy′
∗ is the same as the stationary

randomized policy Policy∗ starting from timeslot 0, according
to the derivations from (41) to (45) in Appendix D, there exists
a positive integer D∗, such that, for all t0 ≥ 0, whenever
t ≥ D∗, we have

Υ
(

Q̂ (t0)
)

=
∑

n,c

Q̂(c)
n (t0)

1

t

t−1
∑

τ=0

E

{

∑

k:k∈Kn

b
∗(c)
nk (τ)

−
∑

k:k∈Kn

b
∗(c)
kn (τ)−a(c)n (τ)

}

≥
ε

2

∑

n,c

Q̂(c)
n (t0) (95)

Plugging (95) back into (93) and letting D
∆
= t ≥

max{D̂, D̃,D∗}, we have, for all t0 ≥ 0,

∆̂D

(

Q̂ (t0)
)

≤ B (D) + C (D)−
ε

2

∑

n,c

Q̂(c)
n (t0), (96)

where we have C (D)
∆
= 2 [C1 (D) +NC2 (D)] =

4ND (N +Amax + 1).
Thus, given the positive ε satisfying (λ

(c)
n + ε) ∈ ΛRMIA,

(96) is achieved under ˆPolicy. According to Lemma 1, we
achieve (22), which completes the proof.

APPENDIX J
PROOF OF THEOREM 6

Given ε satisfying (λ
(c)
n +ε) ∈ ΛRMIA, the goal of the proof

is to show that, the t-timeslot Lyapunov drift under DIVBAR-

FMIA, denoted as ˆ̂
Policy, has an upper bound satisfying the

condition (4) required by Lemma 1. The proof procedure is
also similar to the proof of Theorem 5 (see Appendix I) except
for minor modifications.

To facilitate the proof, we also introduce the intermediate

policies: ˜Policy, Policy′
∗, ˜̃Policy and ˜Policy∗, which are

similar to the ones proposed in Appendix I except for the
following modifications:

• the Policy′
∗ in this proof is the same as ˆ̂

Policy from
timeslot 0 to timeslot t0 − 1;
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• the ˜Policy in this proof is the same as ˆ̂
Policy from

timeslot 0 to timeslot t0 − 1, and from timeslot t0 on,
the transmitting and forwarding decisions of each epoch

are made based on ˆ̂
Q (t0);

• the ˜Policy∗ in this proof is the same as ˆ̂
Policy from

timeslot 0 to timeslot t0−1, and from timeslot t0 on, the
forwarding decisions of each epoch are made based on
ˆ̂
Q (t0);

• the ˜̃Policy in this proof is the same as ˆ̂
Policy from

timeslot 0 to timeslot ˆ̂un,1 − 1 at each node n, and
from timeslot ˆ̂un,1 on, the transmitting and forwarding

decisions of epoch are made based on ˆ̂
Q (t0).

To achieve the proof goal, the strategy is to compare the

key metric
∑

n E{ Zn(
ˆ̂
Q (t0))

∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

ˆ̂
Q (t0)} under the in-

troduced policies.

A. Comparison on the key metric between ˜Policy and

Policy′
∗

The comparison between ˜Policy and Policy′
∗ on the key

metric is the same as that in the proof shown in Appendix

I-A, except that the backlog coefficient here is ˆ̂
Q (t0). The

final comparison results is that, for all t0 ≥ 0, there exists an
integer D̃ > 0, such that, whenever t ≥ D̃,

∑

n

E

{

Z̃n

(

ˆ̂
Q (t0)

)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

ˆ̂
Q (t0)

}

≥
∑

n

E

{

Z ′∗
n

(

ˆ̂
Q (t0)

)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

ˆ̂
Q (t0)

}

−
ε

8

∑

n,c

ˆ̂
Q(c)

n (t0).

(97)

B. Comparison on the key metric between
ˆ̂

Policy and ˜Policy

With the similar strategy as Appendix I-B, the comparison

on the key backpressure metric between ˆ̂
Policy and ˜Policy

consists of two steps: compare ˆ̂
Policy and ˜̃

Policy and then

compare ˜̃
Policy and ˜Policy. In this part of proof, the com-

parison between ˆ̂
Policy and ˜̃

Policy over a single epoch is
summarized as Lemma 6 shown as follows:

Lemma 6. For each node n in a network satisfying Assump-

tion 1 and for all t0 ≥ 0, whenever t ≥ Tmax, we have

E

{

ˆ̂
Zn

(

i, ˆ̂Q (un,i)
)∣

∣

∣

ˆ̂
Q (t0) ,

ˆ̂1n (i) = 1
}

≥

E

{

˜̃Zn

(

i, ˆ̂Q (t0)
)∣

∣

∣

ˆ̂
Q (t0) ,

ˆ̂1n (i) = 1
}

− C2 (t) , (98)

where Tmax
∆
= maxn:n∈N {E {Tn(i)}}; C2 (t) =

t (N +Amax + 1); ˆ̂1n (i) is equal to 1̂n (i) because
ˆ̂

Policy and ˆPolicy have synchronous epochs.

The proof of Lemma 6 is shown in Appendix M.
With (98), the remaining proof is the same as in Appendix

I-B except changing backlog coefficients to ˆ̂
Q (un,i) and

ˆ̂
Q (t0), we have: there exists an integer ˆ̂

D ≥ Tmax, such that,

for all t0 ≥ 0, whenever t ≥ ˆ̂
D,

∑

n

E

{

ˆ̂
Zn

(

ˆ̂
Q (t0)

)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

ˆ̂
Q (t0)

}

≥
∑

n

E

{

Z̃n

(

ˆ̂
Q (t0)

)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

ˆ̂
Q (t0)

}

−

[

NC2 (t) + C1 (t) +
ε

8

∑

n,c

ˆ̂
Q(c)

n (t0)

]

, (99)

where C1 (t) = Nt (N +Amax + 1).

C. Strong stability achieved under
ˆ̂

Policy

With the similar manipulations as in Appendix I-C, it
follows from (97) and (99) that, for all t0 ≥ 0 and with the
integer D

∆
= max{D̂2, D̃2, D

∗}, we have

ˆ̂
∆D

(

ˆ̂
Q (t0)

)

≤ B (D) + C (D)−
ε

2

∑

n,c

ˆ̂
Q(c)

n (t0), (100)

where C (D) = 4ND (N +Amax + 1). According to Lemma
1, we achieve (23), which completes the proof.

APPENDIX K
PROOF OF LEMMA 4

To facilitate the proof, we first define the extended-epoch

of commodity c for link (n, k) as the interval consisting of
contiguous timeslots between two timeslots, in each of which
a unit of commodity c is forwarded from node n to node k.
Specifically, this interval starts from the timeslot right after
the timeslot when a unit of commodity c is forwarded from
node n to node k, and ends at the timeslot when the next
forwarding of a unit of commodity c from node n to node k
happens.

Suppose from timeslot 0 up to an arbitrary timeslot t0, M0−
1 units of commodity c have been forwarded from node n to
node k, where M0 ≥ 1. Therefore, if we define t

(c)
nk,i as the

starting timeslot of the ith extended epoch of commodity c for
link (n, k), with which we further define t

(c)
nk,1 = 0, we have

max
{

t
(c)
nk,M0

− 1, 0
}

≤ t0 < t
(c)
nk,M0+1 − 1, (101)

where, if M0 > 1, t
(c)
nk,M0

− 1 is the ending timeslot of the
(M0 − 1)th extended-epoch of commodity c; if M0 = 1,
timeslot t0 must be located within the 1st extended-epoch
of commodity c, and therefore t0 is lower bounded by 0.
Additionally, for each extended epoch i of commodity c for
link (n, k), we have b

(c)
nk(t

(c)
nk,i+1 − 1) = 1.

Under a stationary randomized policy with the RMIA
transmission scheme, because of the the renewal operations,
and the stationarity of the decision makings and channel

states, 1
t

∑t−1
τ=0 b

(c)
nk (τ) and 1

t

∑t
(c)
nk,i

+t−1

τ=t
(c)
nk,i

b
(c)
nk (τ) are identi-

cally distributed. This property will be used in the following
derivations.

On the one hand, if t0 ≥ t
(c)
nk,M0

, then
∑t0−1

τ=t
(c)
nk,M0

b
(c)
nk (τ) =
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0 and
∑t0+t−1

τ=t
(c)
nk,M0

+t
b
(c)
nk (τ) ≥ 0, and we have

∑t0+t−1

τ=t0
b
(c)
nk (τ)

=

t
(c)
nk,M0

+t−1
∑

τ=t
(c)
nk,M0

b
(c)
nk (τ)−

t0−1
∑

τ=t
(c)
nk,M0

b
(c)
nk (τ) +

t0+t−1
∑

τ=t
(c)
nk,M0

+t

b
(c)
nk (τ)

≥
∑t

(c)
nk,M0

+t−1

τ=t
(c)
nk,M0

b
(c)
nk (τ), (102)

where, for any summation term
∑y

τ=x f (τ), the summa-
tion value is defined as zero when y < x. Additionally,
if t0 = t

(c)
nk,M0

− 1, since b
(c)
nk (t̄

(c)
nk,M0

− 1) = 1 and

b
(c)
nk(t̄

(c)
nk,M0

+ t− 1) ≤ 1, we have

∑t0+t−1

τ=t0
b
(c)
nk (τ)

=

t
(c)
nk,M0

+t−1
∑

τ=t
(c)
nk,M0

b
(c)
nk (τ)+b

(c)
nk

(

t
(c)
nk,M0

− 1
)

−b
(c)
nk

(

t
(c)
nk,M0

+ t− 1
)

≥
∑t

(c)
nk,M0

+t−1

τ=t
(c)
nk,M0

b
(c)
nk (τ). (103)

Note that, given any ε > 0, there exists an integer D(c)
nk,0 > 0,

such that, whenever t ≥ D
(c)
nk,0, we have

∣

∣

∣

∣

∣

1

t

t−1
∑

τ=0

E

{

b
(c)
nk (τ)

}

− b
(c)
nk

∣

∣

∣

∣

∣

≤
ε

2
. (104)

Then according to (102)-(103) together with the fact that
1
t

∑t−1
τ=0 b

(c)
nk (τ) and 1

t

∑t
(c)
nk,M0

+t−1

τ=t
(c)
nk,M0

b
(c)
nk (τ) are identically

distributed, it follows that, for all t0 ≥ 0, whenever t ≥ D
(c)
nk,0,

1

t

t0+t−1
∑

τ=t0

E

{

b
(c)
nk (τ)

}

≥
1

t
E











t
(c)
nk,M0

+t−1
∑

τ=t
(c)
nk,M0

b
(c)
nk (τ)











=
1

t

t−1
∑

τ=0

E

{

b
(c)
nk (τ)

}

≥ b
(c)
nk −

ε

2
. (105)

On the other hand, we have
∑t̄

(c)
nk,M0+1−1

τ=t0 b
(c)
nk (τ) ≤ 2 and

∑t̄
(c)
nk,M0+1

+t−1

τ=t0+t b
(c)
nk (τ) ≥ 0, and it follows that

∑t0+t−1

τ=t0
b
(c)
nk (τ)

=

t
(c)
nk,M0+1+t−1

∑

τ=t
(c)
nk,M0+1

b
(c)
nk(τ)−

t
(c)
nk,M0+1+t−1

∑

τ=t0+t

b
(c)
nk(τ)+

t
(c)
nk,M0+1−1
∑

τ=t0

b
(c)
nk (τ)

≤
∑t

(c)
nk,M0+1+t−1

τ=t
(c)
nk,M0+1

b
(c)
nk (τ) + 2. (106)

Since 1
t

∑t−1
τ=0 b

(c)
nk (τ) and 1

t

∑t
(c)
nk,M0+1

+t−1

τ=t
(c)
nk,M0+1

b
(c)
nk (τ) are iden-

tically distributed, then for all t0 ≥ 0, whenever t ≥
max{D

(c)
nk,0, ⌈4/ε⌉}, we have

1

t

t0+t−1
∑

τ=t0

E

{

b
(c)
nk (τ)

}

≤
1

t
E











t
(c)
nk,M0+1+t−1

∑

τ=t
(c)
nk,M0+1

b
(c)
nk (τ)











+
2

t

≤
(

b
(c)
nk +

ε

2

)

+
ε

2

= b
(c)
nk + ε. (107)

Combining (106) and (107), it follows that, given any ε > 0,
for all t0 ≥ 0, whenever t ≥ max{D

(c)
nk,0, ⌈4/ε⌉}

∆
= D

(c)
nk , we

have
∣

∣

∣

∣

∣

1

t

t0+t−1
∑

τ=t0

E

{

b
(c)
nk (τ)

}

− b
(c)
nk

∣

∣

∣

∣

∣

≤ ε. (108)

APPENDIX L
PROOF OF LEMMA 5

The comparison procedure between ˆPolicy and ˜̃Policy on
their respective metrics involves two aspects: comparing the
metrics over a single epoch; then extending the comparison to
multiple epochs.

To facilitate the later comparisons, it is necessary to trans-
form the key metric under ˆPolicy into certain form that is
easier to manipulate. First, given the positive ε satisfying
(λ

(c)
n + ε) ∈ ΛRMIA, for all t0 ≥ 0, whenever ∀t ≥ ⌈8/ε⌉

∆
=

D̂1, we have
∑

n

E

{

Ẑn

(

Q̂ (t0)
)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

Q̂ (t0)

}

=
∑

n

E







1

t

M̂n(t0,t)
∑

i=1

Ẑn

(

i, Q̂ (t0)
)

−

1

t

u
M̂n(t0,t)+1−1
∑

τ=t0+t

∑

c

∑

k:k∈Kn

b̂
(c)
nk (τ)

[

Q̂(c)
n (t0)−Q̂

(c)
k (t0)

]

∣

∣

∣

∣

∣

∣

Q̂ (t0)







≥
∑

n

E







1

t

M̂n(t0,t)
∑

i=1

Ẑn

(

i, Q̂ (t0)
)

∣

∣

∣

∣

∣

∣

Q̂(t0)







−
ε

8

∑

n,c

Q̂(c)
n (t0)

=
∑

n

E







1

t

M̂n(t0,t)
∑

i=1

Ẑn

(

i, Q̂ (ui)
)

∣

∣

∣

∣

∣

∣

Q̂ (t0)







−
ε

8

∑

n,c

Q̂(c)
n (t0)

−
∑

n

E







1

t

M̂n(t0,t)
∑

i=1

[

Ẑn

(

i, Q̂ (ui)
)

−Ẑn

(

i, Q̂ (t0)
)]

∣

∣

∣

∣

∣

∣

Q̂ (t0)







,

(109)

where

∑

n

E







1

t

M̂n(t0,t)
∑

i=1

[

Ẑn

(

i, Q̂ (ui)
)

−Ẑn

(

i, Q̂ (t0)
)]

∣

∣

∣

∣

∣

∣

Q̂ (t0)







=
∑

n

E







1

t

M̂n(t0,t)
∑

i=1

un,i+1−1
∑

τ=un,i

∑

c

∑

k:k∈Kn

b̂
(c)
nk (τ)×
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[

Q̂(c)
n (un,i)−Q̂(c)

n (t0)+Q̂
(c)
k (t0)−Q̂

(c)
k (un,i)

]∣

∣

∣
Q̂(t0)

}

.

(110)

In (110), t0 < un,2 <, · · · , < un,Mn(t0,t) ≤ t0 + t− 1, while
un,1 ≤ t0 and t0 − un,1 + 1 ≤ Tn (1). Then we have the
following relationship:

Q̂(c)
n (un,i)− Q̂(c)

n (t0) ≤

un,i−1
∑

τ=t0

[

∑

k:k∈Kn

b̂
(c)
kn (τ) + a(c)n (τ)

]

≤ t (N +Amax) ,

for 2 ≤ i ≤ Mn (t0, t) ; (111)

Q̂
(c)
k (t0)− Q̂

(c)
k (un,i) ≤

un,i−1
∑

τ=t0

∑

j:j∈Kk

b̂
(c)
kj (τ)

≤ t, for 2≤ i≤Mn(t0, t) , k ∈ Kn;
(112)

Q̂(c)
n (un,1)− Q̂(c)

n (t0) ≤
t0−1
∑

τ=un,1

∑

k:k∈Kn

b̂
(c)
nk (τ) = 0; (113)

Q̂
(c)
k (t0)− Q̂

(c)
k (un,1) ≤

t0−1
∑

τ=un,1





∑

j:j∈Kk

b̂
(c)
jk (τ) + a

(c)
k (τ)





≤ (N +Amax)Tn (1) , for k ∈ Kn.
(114)

Setting t ≥ Tmax
∆
= maxn:n∈N {E {Tn(i)}} and incorporating

the fact that M̂n (t0, t) ≤ t, we plug (111)-(114) into (110)
and get

∑

n

E







1

t

M̂n(t0,t)
∑

i=1

[

Ẑn

(

i, Q̂ (un,i)
)

−Ẑn

(

i, Q̂ (t0)
)]

∣

∣

∣

∣

∣

∣

Q̂ (t0)







≤ Nt (N +Amax + 1)
∆
= C1 (t) . (115)

If denoting D̂ = max{D̂1, Tmax}, and plugging (115) into
(109) with t ≥ D̂, we finally get, for all t0 ≥ 0,

∑

n

E

{

Ẑn

(

Q̂ (t0)
)∣

∣

∣

t0+t−1

t0

∣

∣

∣

∣

Q̂ (t0)

}

≥
∑

n

E







1

t

M̂n(t0,t)
∑

i=1

Ẑn

(

i, Q̂ (un,i)
)

∣

∣

∣

∣

∣

∣

Q̂ (t0)







− C1 (t)−
ε

8

∑

n,c

Q(c)
n (t0). (116)

A. Comparison between ˆPolicy and
˜̃Policy over a single

epoch

Define the following indicator function of integer i =
1, 2, 3, · · · , t:

1̂n (i) =

{

1, 1 ≤ i ≤ M̂n (t0, t) ≤ t

0, M̂n (t0, t) < i ≤ t.
(117)

Since each node n under ˆPolicy makes decisions based on the
backlog state observation Q̂ (un,i) for each epoch i, the value
of Ẑn(i, Q̂ (un,i)) is independent of Q̂ (t0) given Q̂ (un,i).

Consequently, we have

E

{

Ẑn

(

i, Q̂ (un,i)
)∣

∣

∣ Q̂ (un,i), 1̂n (i) = 1
}

= E

{

Ẑn

(

i, Q̂ (un,i)
)∣

∣

∣ Q̂ (un,i) , Q̂ (t0), 1̂n (i) = 1
}

.

(118)

Additionally, according to Lemma 3, the metric
E{Zn(i, Q̂ (un,i))

∣

∣

∣ Q̂ (un,i) , 1̂n (i) = 1} is maximized

under ˆPolicy among all policies within policy set P , to

which ˜̃Policy also belongs. Thus, given any Q̂ (t0), we have

E

{

Ẑn

(

i, Q̂ (un,i)
)∣

∣

∣
Q̂ (un,i) , Q̂ (t0), 1̂n (i) = 1

}

≥ E

{

˜̃Zn

(

i, Q̂ (un,i)
)∣

∣

∣
Q̂ (un,i) , Q̂ (t0), 1̂n (i) = 1

}

= E

{

˜̃Zn

(

i, Q̂ (t0)
)∣

∣

∣
Q̂ (un,i) , Q̂ (t0), 1̂n (i) = 1

}

−

E

{

˜̃Zn

(

i, Q̂(t0)
)

− ˜̃Zn

(

i, Q̂(un,i)
)∣

∣

∣
Q̂(un,i),Q̂(t0),1̂n(i)=1

}

,

(119)

where, similar to (110)-(114) but with the roles of n and k
switched, by setting t ≥ D̂, we have

E

{

˜̃Zn

(

i, Q̂(t0)
)

− ˜̃Zn

(

i, Q̂(un,i)
)∣

∣

∣Q̂(un,i), Q̂(t0), 1̂n(i)=1
}

≤ t (N +Amax + 1)
∆
= C2 (t) . (120)

Plugging (120) into (119) and then taking expectations on both
sides over Q̂ (un,i), it follows that, whenever t ≥ D̂,

E

{

Ẑn

(

i, Q̂ (un,i)
)∣

∣

∣ Q̂ (t0), 1̂n (i) = 1
}

≥ E

{

˜̃Zn

(

i, Q̂ (t0)
)∣

∣

∣ Q̂ (t0), 1̂n (i) = 1
}

− C2 (t) , (121)

which completes the comparison on the key metric over a

single epoch between ˆPolicy and ˜̃Policy.

B. Comparison between ˆPolicy and
˜̃Policy over M̂n (t0, t)

(or
˜̃Mn (t0, t)) epochs

Starting from (116), we rewrite the first term on the right
hand side as follows:

∑

n

E







1

t

M̂n(t0,t)
∑

i=1

Ẑn

(

i, Q̂ (un,i)
)

∣

∣

∣

∣

∣

∣

Q̂ (t0)







=
1

t

∑

n

t
∑

i=1

E

{

Ẑn

(

i, Q̂ (un,i)
)

1̂n (i)
∣

∣

∣ Q̂ (t0)
}

. (122)

Considering that, if 1̂n (i) = 0, we have

E

{

Ẑn

(

i, Q̂ (un,i)
)

1̂n (i)
∣

∣

∣ Q̂ (t0) , 1̂n (i) = 0
}

= E

{

˜̃Zn

(

i, Q̂ (t0)
)

1̂n (i)
∣

∣

∣ Q̂ (t0) , 1n (i) = 0
}

= 0;

(123)

if 1n (i) = 1, according to (121), we have, for all t0 ≥ 0,
whenever t ≥ D̂,

E

{

Ẑn

(

i, Q̂ (un,i)
)

1̂n (i)
∣

∣

∣ Q̂ (t0) , 1̂n (i) = 1
}
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≥ E

{

˜̃Zn

(

i, Q̂ (t0)
)

1̂n (i)
∣

∣

∣
Q̂ (t0) , 1n (i) = 1

}

− C2 (t) .

(124)

In sum of (123) and (124), it follows that, for all t0 ≥ 0,
whenever t ≥ D̂,

E

{

Ẑn

(

i, Q̂ (un,i)
)

1̂n (i)
∣

∣

∣ Q̂ (t0)
}

≥ E

{

˜̃Zn

(

i, Q̂ (t0)
)

1̂n (i)
∣

∣

∣ Q̂ (t0)
}

− C2 (t) . (125)

Plug (125) into right hand side of (122), and it follows that,
for all t0 ≥ 0, whenever t ≥ D̂,

∑

n

E







1

t

M̂n(t0,t)
∑

i=1

Ẑn

(

i, Q̂ (un,i)
)

∣

∣

∣

∣

∣

∣

Q̂ (t0)







≥
1

t

∑

n

t
∑

i=1

E

{

˜̃Zn

(

i, Q̂ (t0)
)

1̂n (i)
∣

∣

∣ Q̂ (t0)
}

−NC2 (t) .

(126)

Note that the value of 1̂n (i) only depends on
T ′
n,t0 (1) , Tn (2) , · · · , Tn (i− 1), where T ′

n,t0 (1) = un,2−t0,

therefore ˜̃Zn(i, Q̂ (t0)) and 1̂n (i) are independent. Moreover,

we have M̂n (t0, t) =
˜̃Mn (t0, t) because ˆPolicy and ˜̃Policy

have synchronized epochs. Then it follows from (126) that,
for all t0 ≥ 0, whenever t ≥ D̂,

∑

n

E







1

t

M̂n(un,i,t)
∑

i=1

Ẑn

(

i, Q̂ (un,i)
)

∣

∣

∣

∣

∣

∣

Q̂ (t0)







≥
1

t

∑

n

˜̃zn

(

Q̂ (t0)
)

t
∑

i=1

E
{

1̂n (i)
}

−NC2 (t)

=
1

t

∑

n

˜̃zn

(

Q̂ (t0)
)

E

{

˜̃Mn (t0, t)
}

−NC2 (t) . (127)

Finally, going back to (116) and plugging (127) in, we can
get (86) and complete the proof.

APPENDIX M
PROOF OF LEMMA 6

Define ˆ̂
X

(c)
nk (i) under ˆ̂

Policy as the random variable that
takes value 1 if node k ∈ Kn is in the successful receiver
set of epoch i for node n when a unit of commodity c is
transmitted by node n in epoch i with FMIA, and takes value

0 otherwise. Since each node n under ˆ̂
Policy makes decisions

based on the backlog state observation ˆ̂
Q (un,i) for each epoch

i, the value of ˆ̂
Zn(i,

ˆ̂
Q (un,i)) is independent of ˆ̂

Q (t0) and
ˆ̂1 (i) given ˆ̂

Q (un,i). Then, with the similar manipulations as
in the proof of Lemma 3 (see Appendix H), we get a similar

result for ˆ̂
Policy shown as follows:

E

{

ˆ̂
Zn

(

i, ˆ̂Q (un,i)
)∣

∣

∣

ˆ̂
Q (un,i) ,

ˆ̂
Q (t0) ,

ˆ̂1n (i) = 1
}

= E

{

max
k:k∈Kn

{

ˆ̂
X
(ˆ̂cn(i))
nk (i)

ˆ̂
W

(ˆ̂cn(i))
nk (un,i)

}

∣

∣

∣

ˆ̂
Q (un,i) ,

ˆ̂
Q (t0) ,

ˆ̂1n (i) = 1, ˆ̂µ(ˆ̂cn(i))
n (i) = 1

}

× E

{

ˆ̂µn (i)
∣

∣

∣

ˆ̂
Q (un,i)

}

(128)

In (128), adding ˆ̂
Q (t0) and ˆ̂1 (i) = 1 as part of the given

condition is for the convenience of later derivations.
To facilitate the later proof, we introduce another interme-

diate policy, which is denoted as ˆPolicy′ (i), i ≥ 1, and is

defined as follows: it is the same as
ˆ̂

Policy from timeslot 0 to

timeslot ˆ̂un,i − 1 at each node n; starting from timeslot ˆ̂un,i,

node n makes the transmitting and forwarding decisions based

on
ˆ̂
Qn (un,i) using the same strategies as under ˆPolicy, and

the transmissions use the RMIA transmission scheme. Starting
from timeslot ˆ̂un,i, ˆPolicy′ (i) can be treated the same as

ˆPolicy but with initial CPQ backlog state ˆ̂
Qn (un,i), and we

have

ĉ′n (i) =
ˆ̂cn (i) ; µ̂

(ĉ′n(i))
n (i) = µ̂′

n (i) = ˆ̂µn (i) =
ˆ̂µ
(ˆ̂cn(i))
n (i) .

(129)
Additionally, in epoch i for each node n, since FMIA is used

in the transmissions under ˆ̂
Policy, where the retained partial

information is used in the decoding process, while RMIA is
used in the transmissions under ˆPolicy′ (i), we have, for any
commodity c,

ˆ̂
X

(c)
nk (i) ≥ X̂ ′

(c)

nk (i) . (130)

With (129) and (130), it follows from (128) that

E

{

ˆ̂
Zn

(

i, ˆ̂Q (un,i)
)∣

∣

∣

ˆ̂
Q (un,i) ,

ˆ̂
Q (t0) ,

ˆ̂1n (i) = 1
}

≥E

{

max
k:k∈Kn

{

X̂ ′(ĉ
′

n(i))
nk (i)

ˆ̂
W

(ĉ′(i))
nk (un,i)

}

∣

∣

∣

ˆ̂
Q (un,i) ,

ˆ̂
Q (t0) ,

ˆ̂1n (i) = 1, µ̂′
n (i) = 1

}

× E

{

µ̂′
n (i)|

ˆ̂
Q (un,i)

}

=E

{

Ẑ ′
n

(

i, ˆ̂Q (un,i)
)∣

∣

∣

ˆ̂
Q (un,i) ,

ˆ̂
Q (t0) ,

ˆ̂1n (i) = 1
}

.

(131)

Taking expectations over ˆ̂
Q (un,i) on both sides of (131)

yields:

E

{

ˆ̂
Zn

(

i, ˆ̂Q (un,i)
)∣

∣

∣

ˆ̂
Q (t0) ,

ˆ̂1n (i) = 1
}

≥ E

{

Ẑ ′
n

(

i, ˆ̂Q (un,i)
)∣

∣

∣

ˆ̂
Q (t0) ,

ˆ̂1n (i) = 1
}

(132)

According to the definition of ˆPolicy′ (i), we follow the
similar manipulations as in the proof of Lemma 5 (see
Appendix L-A) and get, for all t0 ≥ 0, whenever t ≥ Tmax,

E

{

Ẑ ′
n

(

i, ˆ̂Q (un,i)
)∣

∣

∣

ˆ̂
Q (t0) ,

ˆ̂1n (i) = 1
}

≥ E

{

˜̃Zn

(

i, ˆ̂Q (t0)
)∣

∣

∣

ˆ̂
Q (t0) ,

ˆ̂1n (i) = 1
}

− C2 (t) .

(133)

Plugging (133) into (132) yields (98), which completes the
proof.
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