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Abstract—Distributed cloud networking enables the deploy-
ment of network services in the form of interconnected virtual
network functions instantiated over general purpose hardware
at multiple cloud locations distributed across the network. The
network service distribution problem has been considered as
a static global optimization problem to find the placement of
virtual functions and the routing of network flows that meet
a given set of demands with minimum cost. In this paper, we
address the design of distributed online solutions that drive
local routing, processing, and resource allocation decisions while
providing global objective guarantees. We present a distributed
joint transmission-processing flow scheduling and resource al-
location algorithm that stabilizes the underlying cloud network
queuing system, while achieving arbitrarily close to minimum
average network cost, with a tradeoff in network delay. We
further enhance our algorithm with a shortest transmission-plus-
processing distance bias that improves the delay performance
without compromising throughput nor overall cloud network
cost. We provide simulation results that confirm our theoretical
analysis, illustrate the effect of the shortest transmission-plus-
processing distance bias, and demonstrate remarkably good
convergence to the optimal cloud network configuration.

Index Terms — distributed cloud networking, virtual networ k
function, distributed optimization, dynamic control

I. I NTRODUCTION

Distributed cloud networking builds on network functions
virtualization (NFV) and software defined networking (SDN)
to enable the deployment of network services in the form of
elastic virtual network functions instantiated over commercial
off the shelf (COTS) servers at multiple cloud locations and
interconnected via a programmable network fabric [1]-[3].In
this evolved virtualized environment, network operators can
host a variety of highly adaptable services over a common
physical infrastructure, reducing both capital and operational
expenses, while providing quality of service guarantees. While
this approach is very attractive for network providers, it poses
several technical challenges. Chief among them is how to
efficiently assign network functions to the various serversin
the network. These placement decisions must be coordinated
with the routing of network flows through the appropriate
network functions, and with resource allocation decisionsthat
determine the amount of resources (e.g., virtual machines)
allocated to each function.

The problem of placing virtual network functions in dis-
tributed cloud networks was first addressed in [4]. The problem
is formulated as a generalization of Generalized Assignment
(GA) and Facility Location (FA), and a(O(1), O(1)) bi-
criteria approximation with respect to both overall cost and
capacity constraints is provided. Shortly after, [5] introduced

the cloud service distribution problem (CSDP), where the goal
is to find the placement of network functions and the routing of
network flows that minimize the overall cloud network cost.
The CSDP is formulated as a minimum cost network flow
problem, in which flows consume both network and cloud
resources as they go through the required virtual functions.
The CSDP is shown to admit polynomial-time solutions under
linear costs and fractional flows. However, both of these works
have two main limitations:

• They consider astatic scenario with a priori known
demands. However, with the increasing heterogeneity and
dynamics inherent to both service demands and the under-
lying cloud network, we argue that online algorithms that
enable rapid adaptation to changes in network conditions
and service demands are essential.

• They consider a centralized optimization. However, the
complexity associated with the resulting global optimiza-
tion problem and the need to have global knowledge of
the service demands, limits the use of centralized algo-
rithms, specially in large-scale distributed cloud networks
and under time-varying demands.

Our previous work in [6] is the first to address the service
distribution problem in a dynamic cloud network setting. The
proposed dynamic cloud network control (DCNC) algorithm is
based on augmenting the Lyapunov drift-plus-penalty control
method [7]-[9], which had only been used intraditional
(transmission) networks, to account for both transmissionand
processing flows, consuming network and cloud resources.
However, several issues remain open for improvement:i)
the analysis in [6] considers only expected time-averaged
performance guarantees, andii) the resulting network delay
can be significant, especially in lightly loaded networks.

This paper extends the work in [6] with the following
contributions: i) we provide the bounds for time average
cost and time average occupancy (total queue backlog) with
probability 1 (instead of in expected time average);ii) we
design a keyshortest transmission-plus-processing distance
bias extension to the DCNC algorithm, which is shown
to significantly reduce network delay without compromising
throughput nor overall cloud network cost; andiii) we present
simulation results that illustrate the effect of incorporating
the shortest transmission-plus-processing distance biasinto the
DCNC algorithm, as well as its efficiency in reducing overall
cloud network cost and delay for different parameter settings
and network scenarios that include up to 110 clients.

The rest of the paper is organized as follows. Sec. II intro-



duces the model and problem formulation. Sec. III describes
the proposed algorithm, including the shortest transmission-
plus-processing distance bias extension. Simulation results are
presented in Sec. IV. We summarize the main conclusions in
Sec. V.

II. M ODEL AND PROBLEM FORMULATION

A. Cloud network model

We consider a cloud network modeled as a directed graph
G = (V , E) with |V| = N vertices and|E| = E edges
representing the set of network nodes and links, respectively.
In the context of a cloud network, a node represents a
distributed cloud location, in which virtual network functions
(VNFs) can be instantiated in the the form of virtual machines
(VMs) over COTS servers, while an edge represents a logical
link (e.g., IP link) between two cloud locations. We denote by
δ(i) ∈ V the set of neighbor nodes ofi ∈ V in G.

Cloud and network resources are characterized by their
processing and transmission capacity and cost, respectively.
In particular, we define:

• Ki = {0, 1, · · · ,Ki}: the set of possible processing
resource units at nodei

• Kij = {0, 1, · · · ,Kij}: the set of possible transmission
resource units at link(i, j)

• Ci,k: the capacity, in processing flow units, resulting from
the allocation ofk resource units (e.g., VMs) at nodei

• Cij,k: the capacity, in transmission flow units, resulting
from the allocation ofk resource units (e.g., 1G links) at
link (i, j)

• wi,k: the cost of setting upk resource units at nodei
• wij,k: the cost of setting upk resource units at link(i, j)
• ei: the cost per processing flow unit at nodei
• eij : the cost per transmission flow unit at link(i, j)

B. Network service model

A network serviceφ ∈ Φ is described by a chain of VNFs.
We denote byMφ = {1, 2, · · · ,Mφ} the ordered set of VNFs
of serviceφ. Hence, the tuple(φ,m), with φ ∈ Φ andm ∈
Mφ, identifies them-th function of serviceφ. We refer to
a client as a source-destination pair(s, d), with s, d ∈ V . A
client requesting network serviceφ ∈ Φ implies the request for
the network flows originating at source nodes to go through
the sequence of VNFs specified byMφ before exiting the
network at destination noded.

Each VNF has (possibly) different processing requirements,
which may also vary among cloud locations. We denote by
r(φ,m) the processing-transmission flow ratio of VNF(φ,m).
That is, when one transmission flow unit goes through VNF
(φ,m), it occupiesr(φ,m) processing resource units. In addi-
tion, our service model also captures the possibility of flow
scaling. We denote byξ(φ,m) > 0 the scaling factor of VNF
(φ,m). That is, the size of the output flow of VNF(φ,m)
is ξ(φ,m) times larger than its input flow. We refer to a VNF
with ξ(φ,m) > 1 as an expansion function, and to a VNF with
ξ(φ,m) < 1 as a compression function. Moreover, a processing
delay D

(φ,m)
i (in time units) is incurred in executing VNF
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Fig. 1. A network service chainφ ∈ Φ composed ofMφ = 2 functions.
Serviceφ takes source commodity(d, φ, 0) and delivers final commodity
(d, φ, 2) after going through the sequence of functions{(φ, 1), (φ, 2)}. VNF
(φ,m) takes commodity(d, φ,m− 1) and generates commodity(d, φ,m).

(φ,m) at nodei, as long as the processing flow satisfies the
node capacity constraint.

We remark that our service model applies to a wide range of
cloud services that go beyond NFV services, and that includes,
for example, Internet of Things (IoT) services, expected to
largely benefit from the proximity and elasticity of distributed
cloud networks [10].

As in [6], we adopt amulti-commodity-chain flow model, in
which a commodity represents a network flow at a given stage
of a service chain. We use the triplet(d, φ,m) to identify a
commodity flow that is output of them-th function of service
φ for client d. The source commodity of serviceφ for client
d is identified by(d, φ, 0) and the final commodity delivered
to d by (d, φ,Mφ), as illustrated in Fig. 1.

C. Queuing Model

We consider a time slotted system with slots normalized
to integral unitst ∈ {0, 1, 2, · · · }. We denote bya(d,φ,m)

i (t)
the exogenous arrival rate of commodity(d, φ,m) at node
i during timeslott, and by λ(d,φ,m)

i the expected value of
a
(d,φ,m)
i (t), referred to as average input rate. We assume that

a
(d,φ,m)
i (t) is independently and identically distributed (i.i.d.)

across timeslots.
At each timeslott, every node makes a transmission and

processing decision on all of its output interfaces. We use
µ
(d,φ,m)
ij (t) to denote the assigned flow rate at link(i, j)

for commodity(d, φ,m) at time t, µ(d,φ,m)
i,pr (t) to denote the

assigned flow rate from nodei to its processing unit for
commodity(d, φ,m) at time t, andµ(d,φ,m)

pr,i (t) to denote the
assigned flow rate from nodei’s processing unit to nodei for
commodity(d, φ,m) at time t.

During network evolution, internal network queues buffer
packets according to their commodities. We define thequeue
backlog of commodity(d, φ,m) at nodei, Q(d,φ,m)

i (t), as the
amount of commodity(d, φ,m) in the queue of nodei at
the beginning of timeslott. TheQ

(d,φ,m)
i (t) process evolves

according to the following queuing dynamics:1

Q
(d,φ,m)
i (t+1)≤



Q
(d,φ,m)
i (t)−

∑

j∈δ(i)

µ
(d,φ,m)
ij (t)− µ

(d,φ,m)
i,pr (t)





+

+
∑

j∈δ(i)

µ
(d,φ,m)
ji (t) + µ

(d,φ,m)
pr,i (t) + a

(d,φ,m)
i (t). (1)

1Throughout the paper, we use[x]+ to denotemax{x, 0}.



In addition, at each timeslott, cloud network nodes can
also make resource allocation decisions. We denote byyij,k(t)
the binary variable indicating the allocation ofk transmission
resource units at link(i, j) in timeslot t, and by yi,k(t)
the binary variable indicating the allocation ofk processing
resource units at nodei in timeslot t.

D. Problem Formulation

The goal is to design a control algorithm that, given
exogenous arrival rates with average input rate matrixλ =

(λ
(d,φ,m)
i ), supports all service demands while minimizing the

average cloud network cost. Specifically, we require the cloud
network to be rate stable (see Ref. [7]),i.e.,

lim
t→∞

Q
(d,φ,m)
i (t)

t
= 0 with prob. 1 ∀i, (d, φ,m). (2)

The dynamic service distribution problem (DSDP) can then
be formulated as follows:

min lim sup
t→∞

1

t

t−1
∑

τ=0

E {h(τ)} (3a)

s.t. The cloud network is rate stable with input rateλ

(3b)

µ
(d,φ,m)
pr,i (τ) = ξ(φ,m)µ

(d,φ,m−1)
i,pr (τ−D

(φ,m)
i )

∀i, d, φ,m > 0, τ (3c)
∑

(d,φ,m>0)

µ
(d,φ,m−1)
i,pr (τ)r(φ,m)≤µi(τ)≤

∑

k∈Ki

Ci,k yi,k(τ)

∀i, τ (3d)
∑

(d,φ,m)

µ
(d,φ,m)
ij (τ) ≤ µij(τ) ≤

∑

k∈Kij

Cij,k yij,k(τ)

∀(i, j), τ (3e)

µ
(d,φ,m)
i,pr (τ), µ

(d,φ,m)
pr,i (τ), µ

(d,φ,m)
ij (τ)∈ R

+

∀i, (i, j), d, φ,m, τ (3f)

yi,k(τ), yij,k(τ) ∈ {0, 1} ∀i, (i, j), d, φ,m, τ (3g)

where (3c) describes the instantaneous commodity-chain con-
straints, (3d) and (3e) are instantaneous transmission and
processing capacity constrains, and the cost functionh(τ) is
given by

h(τ) =
∑

i∈V

(

ei µi(τ) +
∑

k∈Ki

wi,k yi,k(τ)

)

+

∑

(i,j)∈E



eij µij(τ) +
∑

k∈Kij

wij,k yij,k(τ)



 . (4)

In the following section, we present a dynamic control
algorithm that obtains arbitrarily close to optimal solutions
to (3) in a fully distributed fashion.

III. D YNAMIC CLOUD NETWORK CONTROL

In this section, we first describe a distributed dynamic cloud
network control (DCNC) strategy that extends the Lyapunov
drift-plus-penalty algorithm to account for both transmission

and processing flow scheduling and resource allocation deci-
sions, first introduced in [6]. We then extend the analysis of
[6] to show that DCNC provides arbitrarily close-to-optimal
solutions with probability 1. Finally, we present E-DCNC, an
enhanced dynamic cloud network control algorithm that intro-
duces a shortest transmission-plus-processing distance bias
to reduce network delay without compromising throughput or
average cloud network cost.

A. DCNC algorithm

Local transmission decisions:At the beginning of each
timeslot t, each nodei observes the queue backlogs of all
its neighbors and performs the following operations for each
of its outgoing links(i, j), j ∈ δ(i):

1) For each commodity(d, φ,m), compute thetransmis-
sion utility weight

W
(d,φ,m)
ij (t) =

[

Q
(d,φ,m)
i (t)−Q

(d,φ,m)
j (t)− V eij

]+

whereV is a non-negative control parameter that deter-
mines the degree to which cost minimization is empha-
sized.

2) Compute the optimal commodity(d, φ,m)∗ as:

(d, φ,m)∗= argmax
(d,φ,m)

{

W
(d,φ,m)
ij (t)

}

3) If W (d,φ,m)∗

ij (t) = 0, then,k∗ = 0. Otherwise,

k∗= argmax
k

{

Cij,kW
(d,φ,m)∗

ij (t)− V wij,k

}

4) Take the following resource allocation and flow rate
assignment decisions:

yij,k∗(t) = 1

yij,k(t) = 0 ∀k 6= k∗

µ
(d,φ,m)∗

ij (t) = Cij,k∗

µ
(d,φ,m)
ij (t) = 0 ∀(d, φ,m) 6= (d, φ,m)∗

Local processing decisions:At the beginning of each times-
lot t, each nodei observes its local queue backlogs and
performs the following operations:

1) For each commodity(d, φ,m), compute theprocessing
utility weight

W
(d,φ,m)
i (t) = 1

r(φ,m+1)

[

Q
(d,φ,m)
i (t)−ξ(φ,m+1)Q

(d,φ,m+1)
i (t)−V ei

]+

The processing utility weightW (d,φ,m)
i (t) indicates the

benefit of executing function(φ,m + 1) to process
commodity (d, φ,m) into commodity (d, φ,m+1) at
time t, in terms of the local backlog reduction per
processing unit cost.

2) Compute the optimal commodity(d, φ,m)∗ as:

(d, φ,m)∗= argmax
(d,φ,m)

{

W
(d,φ,m)
i (t)

}



3) If W (d,φ,m)∗

i (t) = 0, then,k∗ = 0. Otherwise,

k∗= argmax
k

{

Ci,kW
(d,φ,m)∗

i (t)− V wi,k

}

4) Take the following resource allocation and flow rate
assignment decisions:

yi,k∗(t) = 1

yi,k(t) = 0 ∀k 6= k∗

µ
(d,φ,m)∗

i,pr (t) =
1

r(φ,m+1)∗
Ci,k∗

µ
(d,φ,m)
i,pr (t) = 0 ∀(d, φ,m) 6= (d, φ,m)∗

Observe from the above algorithm description that the finite
processing delayD(φ,m)

i is not involved in the implementation
of DCNC. The reason is that omittingD(φ,m)

i in the scheduling
decisions of DCNC does not affect the throughput optimality
or the average cost convergence. This is shown in the proof
of Theorem 1, which is given in [12] due to space limitations.

B. Performance Analysis

In this section, we extend the analysis of [6] to show
that the DCNC algorithm achieves the average cost-delay
tradeoff [O(1/V ), O(V )] with probability 1 (w.p.1). To this
end, lettingΛ denote thecloud network capacity region, whose
characterization is described in [6, Theorem 1 ], the following
theorem follows:

Theorem 1. If the average rate matrix λ = (λ
(d,φ,m)
i ) is

strictly interior to the capacity region Λ, and ξ(φ,m), r(φ,m),
D

(φ,m)
i , and

∑

(d,φ,m)E[(a
(d,φ,m)
i (t))4] are bounded, then the

DCNC algorithm stabilizes the cloud network, while achieving
arbitrarily close to minimum average cost h∗(λ) w.p.1, i.e.,

lim sup
t→∞

1

t

t
∑

τ=0

h(τ) ≤ h
∗
(λ) +

NB

V
, (w.p.1) (5)

lim sup
t→∞

1

t

∑

τ,i,d,φ,m

Q
(d,φ,m)
i (τ)≤

NB+V [h
∗
(λ+ǫ1)−h

∗
(λ)]

ǫ

(w.p.1) (6)

where B is a constant depending on the system parameters
Cij,Kij

, Ci,Ki
, Amax, ξ(φ,m), and r(φ,m); ε is a positive

constant satisfying (λ+ ε) ∈ Λ; and, with an slight abuse
of notation, h

∗
(λ) denotes the minimum average cost of the

DSDP formulated in (3).

�

Note that the parameterV drives the average cost arbitrarily
close to the minimum costh

∗
(λ) with a corresponding linear

increase in average network congestion (average delay).
Proof: The proof of Theorem 1 is given in [12] and

ommitted here due to space limitations.

C. Delay Improvement via Enhanced Dynamic Cloud Network
Control (E-DCNC)

The DCNC algorithm determines the routes and the service
distribution according to the evolving backlog accumulation

in the network. However, queue backlogs have to build up
in the appropriate direction before yielding efficient routes
and service distribution, which can result in degraded delay
performance.

The delay performance of multi-hop queuing networks can
be improved by introducing a bias term into the weight of
the dynamic control algorithm [9][11], where the bias term
represents the number of hops or the geometric distance to the
destination. Control decisions are then made based on the joint
observation of the backlog state and the bias term. In order
to leverage this technical track to reduce end-to-end delay
in cloud networks, the bias term needs to capture the effect
of both transmission and processing delay. Accordingly, we
propose E-DCNC, and enhanced DCNC algorithm designed
to reduce cloud network delay. Specifically, for each queue
backlog Q

(d,φ,m)
i (t), we define a modified queue backlog

Q̃
(d,φ,m)
i (t):

Q̃
(d,φ,m)
i (t)

∆
= Q

(d,φ,m)
i (t) + ηY

(d,φ,m)
i , (7)

where Y
(d,φ,m)
i denotes the shortest transmission-plus-

processing distance bias term, andη is a control parameter
representing the degree to which we emphasize the bias with
respect to the backlog. Furthermore, we define

Y
(d,φ,m)
i

∆
=

{

min
j∈V

{

Hij +D
(φ,m)
j

}

, 0 ≤ m < Mφ

Hid , m = Mφ

, (8)

whereHij represents the number of hops from nodei to node
j along the shortest path.

E-DCNC is formed by usingQ̃(d,φ,m)
i (t) in place of

Q
(d,φ,m)
i (t) in the DCNC algorithm, and modifying the con-

dition for choosingk∗ = 0 to be as follows (see step 3 of
DCNC algorithm description):

• For local transmission decisions:̃W (d,φ,m)∗

ij (t) = 0 or

Q
(d,φ,m)
i (t) = 0;

• For local processing decisions:̃W (d,φ,m)∗

i (t) = 0 or
Q

(d,φ,m)
i (t) = 0.

The motivation of changing the condition for settingk∗ =
0 is to avoid unnecessary resource consumption when
W̃

(d,φ,m)∗

ij (t) or W̃ (d,φ,m)∗

i (t) are positive, but the queue of
commodity(d, φ,m)∗ is empty.

It can be shown that the throughput optimality and average
resource cost efficiency of E-DCNC can also be guaranteed.
Moreover, as shown by the simulation experiments presented
in the following section, a significantly lower congestion level
is achieved under E-DCNC, demonstrating enhanced delay
performance, particularly when the network is lightly loaded,
without compromising overall throughput nor cloud network
cost. In fact, note that with the bias term defined in (8) and
under light traffic load, for commodities that require further
processing,0 ≤ m < Mφ, flows tend to be routed along
the path with the smallest combined transmission-processing
delay, while for final commodities,m = Mφ, data flows follow
the shortest path to their corresponding destination noded.
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Fig. 2. Abilene US Continental Network. Nodes are indexed as: 1) Seattle,
2) Sunnyvale, 3) Denver, 4) Los Angeles, 5) Houston, 6) Kansas City, 7)
Atlanta, 8) Indianapolis, 9) Chicago, 10) Washington, 11) New York.

IV. SIMULATION EXPERIMENTS

In this section, we present numerical results obtained from
simulating the DCNC and E-DCNC algorithms during106

timeslots.
We assume a cloud network based on the Abilene US

continental network, shown in Fig. 2. All14 links exhibit
homogeneous transmission capacities and costs, and all11
nodes represent cloud locations with homogeneous processing
capacity choices. In particular, two service scenarios on the
Abilene network are simulated: a small scale scenario of 2
services with 2 source-destination pairs (or clients); a large
scale scenario with 1 service and 110 source-destination pairs.

The common simulation settings for the two scenarios are as
follows. All links have two capacity choicesCij,0 andCij,1,
with corresponding resource allocation costswij,0 = 0 and
wij,1 = 1, and load-dependent costseij = 1. All nodes have
two processing capacity choicesCi,0 andCi,1, and resource
allocation costs,wi,0 = 0 andwi,1 = 1. However, cloud nodes
have different load-dependent processing costs. In particular,
we assume Kansas City (node 5) and Houston (node 6) have
cheaper processing costs,e5 = e6 = 1, while for any other
node ei = 3. Every node in the network has the ability to
implement all the functions of all the services.

A. The Small Scale Service Scenario

In this scenario, we haveCij,0 = 0, Cij,1 = 1, Ci,0 = 0,
Ci,1 = 1, and consider 2 services, each composed of 2 virtual
functions. All 4 functions have the same complexity, given
by a processing-transport flow ratio of1 and a processing
delay of 10 timeslots. In terms of flow scaling, the first and
second functions of Service 1 have a scaling factor of1 and
3, respectively. That is, the second function of Service 1 is
an expansion function. For Service 2, the first and second
functions have a scaling factor of0.25 and1, respectively. That
is, the first function of Service 1 is a compression function.We
assume one source-destination pair for Service 1, with source
in Seattle (node 1) and destination in New York (node 11),
and another for Service 2, with source in Sunnyvale (node
2) and destination in Atlanta (node 7). Both source nodes
receive exogenous arrivals with rate satisfying i.i.d. Poisson
distribution across timeslots with mean value1.
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Fig. 3. Processing flow rate distribution over all cloud nodes in small service
scale scenario.

Fig. 3 shows the processing flow rate distribution for the
four functions across the cloud network nodes under DCNC.
Observe how VNF(1, 1) (first function of service 1) is mostly
implemented in Kansas City (node 6), which is the node
with lowest processing cost along the shortest path from
Seattle (Node 1) to New York (Node 11). Note, however,
that the expansion function VNF(1, 2) is largely implemented
in New York (node11), which is the final destination of
Service 1, in order to minimize the transmission cost impact
of the larger final commodity(11, 1, 2) resulting from the
execution of VNF(1, 2). For Service 2, the first function,
VNF (2, 1), is a compression function with scaling factor0.25.
As expected, VNF(2, 1) is mostly implemented at the source
node (node 2), in order to reduce the transmission cost of
Service 2 by compressing the source commodity(7, 2, 0) into
commodity (7, 2, 1) before commodity(7, 2, 0) even flows
into the network. The processing of commodity(7, 2, 1) by
VNF (2, 2) to generate commodity(7, 2, 2) concentrates at
node 5 because this node has the lowest processing cost
among the nodes on the shortest path from Sunnyvale (node
2) to Atlanta (node 7). Note that the average flow rate of
commodity(7, 2, 1) is approximately0.25 due to the effect of
the compression function(2, 1).

With the simulated average demand rate of1 for both
services, the minimum average cloud network cost can be
computed by inspection. Specifically, the optimal flow paths
for the two services are the two respective shortest paths. The
optimal function placement are node 6 for VNF(1, 1), node
11 for VNF (1, 2), node 2 for VNF(2, 1), and node 5 for
VNF (2, 2). The resulting average cost is22.

Figs. 4a and 4b demonstrate the tradeoff between the
time average cost and the time average occupancy (time
average total queue backlog) as a function of the control
parameterV under both DCNC and E-DCNC. According to
Fig. 4a, the time average costs under both DCNC and E-
DCNC converge to approximately 22, while the time average
occupancies increase linearly with respect toV . These results
clearly demonstrate the[O(1/V ), O(V )] cost-delay tradeoff as
suggested by the performance bounds of Theorem 1.

On the other hand, comparing the performance of DCNC
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Fig. 4. Network service distribution in small-scale service scenario. a) Time average cost v.s. control parameter V; b)Time average total occupancy vs.
control parameter V; c) Time average cost evolution over time.

and E-DCNC with differentη values, it can be seen from
Fig. 4b that E-DCNC exhibits significantly lower average
occupancy than DCNC, demonstrating a better delay perfor-
mance. Note that the average occupancy further reduces asη
is increased from 1 to 3. Note also, from Fig. 4a, that the
larger theη value, the larger the control parameterV has to
be to approximate the minimum average cloud network cost.

Fig. 4c exhibits the evolution of the average cloud network
cost over time under DCNC and E-DCNC with differentη
values, whenV = 7. Note that the converging speed of E-
DCNC is no lower than the converging speed of DCNC.

The delay performances of DCNC and E-DCNC can also
be compared by simulating the average occupancy evolving
over different exogenous average input rate within the net-
work capacity region. As shown in Fig. 5, note that, while
maintaining the same average input rate for the two source
commodities,(11, 1, 1) and (7, 2, 1), as this common average
input rate increases up to approximately1.34, the average total
queue backlog under DCNC and E-DCNC with differentη
values exhibit sharp increases. This indicates that the average
input rate has reached the boundary of the network capacity
region.We can also see that the average occupancy under E-
DCNC is lower than under DCNC and further decreases as the
value of η increases, as long as the average input rate does
not exceed the boundary of the network capacity region. This
result is consistent with the result shown in Fig. 4b.

B. The Large Scale Service Scenario

In this scenario, we conduct simulations of DCNC and E-
DCNC for a single service, but with 110 clients,i.e., all the
possible source-destination pairs in the Abilene network.The
service has 1 virtual function with processing-transport flow
ratio of 1, processing delay of 10 timeslots, and scaling factor
of 1. The source nodes of each client or source-destination
pari (s, d) receives exogenous arrivals of commodity(1, 1, d)
according to an i.i.d. (across timeslots) Poisson distribution
with mean rate 1. We consider two cases in terms of available
capacities: Case 1:Cij,0 = 0, Cij,1 = 110, Ci,0 = 0 and
Ci,1 = 110; and Case 2:Cij,0 = 0, Cij,1 = 30, Ci,0 = 0 and
Ci,1 = 30.
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Fig. 5. Average occupancy in small scale service scenario under DCNC and
E-DCNC with varying exogenous average input rate andV = 10.

Figs. 6 and 7 show the evolution of the average cost and
the average occupancy, respectively, with respect to the control
parameterV , under DCNC for both Case 1 and Case 2, and
under E-DCNC for Case 1. Similarly to the small scale service
scenario, the results demonstrate the[O(1/V ), O(V )] cost-
delay tradeoff. In addition, Fig. 7 shows that the occupancy
level in Case 1 is generally lower than that in Case 2, which
is intuitive due to the fact that the resource unit capacity (both
for transmission and processing) in Case 1 (=110) is larger
than that in Case 2 (=30). Focusing on Case 1, the scenario
with largest maximum capacity (=110), Fig. 7 shows how
the shortest transmission-plus-processing distance biasallows
E-DCNC to significantly reduce the average occupancy (and
hence average delay) compared to DCNC. Also, note from
Fig. 6 that the difference in convergence speed of the average
cost with respect toV between DCNC and E-DCNC is almost
negligible. Therefore, Figs. 6 and 7 indicate that the delay
performance gain of E-DCNC is nearly “free”, which is due
to the fact that the network in Case 1 is lightly loaded.

Figs. 8(a) and 8(b) show the processing rate distribution
among all the nodes under DCNC in Case 1 and Case 2,
respectively. In both cases, the processing load in Kansas
city (node 5) and Houston (node 6) is much higher than the
processing load in the rest of the nodes. This is because the
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processing cost at node 5 and 6 (e5 = e6 = 1) is cheaper
than the processing costs at the other nodes (ei = 3). As a
result, the majority of the processing flow has the tendency to
concentrate at nodes 5 and 6. In addition, it is interesting to
note that the processing flow rate in Case 1 concentrates even
more on nodes 5 and 6 than in Case 2. This is because of the
link capacity difference between the two cases. Specifically,
in Case 1, the maximum capacity of each link is large enough
such that, given the average exogenous input rates in this
simulation setting, no link will be a bottleneck for the delivery
of data to node 5 or 6, and therefore the processing tends to
concentrate at nodes 5 and 6. In contrast, in Case 2, since
the capacity of each link is only 30, the delivery of data
suffers from the bottleneck effect imposed by certain links.
As a result, the processing in Case 2 “spreads out” to other
nodes and concentrates less at nodes 5 and 6.

V. CONCLUSION

We address the network service distribution problem in a dy-
namic cloud network setting, in which demands are unknown
and time varying. We extend theLyapunov drift-plus-penalty
network control algorithm to account for both transmissionand
processing of network flows and the corresponding allocation
of network and cloud resources. We present a distributed
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Fig. 8. Processing flow rate distribution over all cloud nodes in large-scale
service scenario: a)Cij,1 = 110, Ci,1 = 110; b) Cij,1 = 30, Ci,1 = 30.

joint flow scheduling and resource allocation algorithm that
stabilizes the underlying queuing system within this region,
while achieving arbitrarily close to minimum average cloud
network cost, with a tradeoff in network delay. We show that
the time average cost and occupancy meet the stability con-
straints with probability 1. We then introduce an appropriate
shortest transmission-plus-processing distance bias into the
dynamic cloud network control (DCNC) algorithm. We show
via simulations that the resulting enhanced E-DCNC algorithm
significantly reduces network delay, specially in lightly loaded
scenarios, without compromising overall cloud network cost.
The results presented in this paper can serve as guidelines for
the deployment and dynamic orchestration of next generation
cloud network services.
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