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Abstract—Distributed cloud networking enables the deploy- the cloud service distribution problem (CSDP), where thal go
ment of network services in the form of interconnected virttal s to find the placement of network functions and the routihg o
network functions instantiated over general purpose hardvare  anyork flows that minimize the overall cloud network cost.
at multiple cloud locations distributed across the network The The CSDP is f lated . t network fl
network service distribution problem has been considered & e ] IS Pm‘“ae as a minimum: cost network: Tow
a static global optimization problem to find the placement of Problem, in which flows consume both network and cloud
virtual functions and the routing of network flows that meet resources as they go through the required virtual functions
a given set of demands with minimum cost. In this paper, we The CSDP is shown to admit polynomial-time solutions under

address the design of distributed online solutions that d¥e jinaar costs and fractional flows. However, both of thesekaor
local routing, processing, and resource allocation decishs while have two main limitations: ’ '

providing global objective guarantees. We present a distbuted
joint transmission-processing flow scheduling and resoue al- « They consider astatic scenario with a priori known

location algorithm that stabilizes the underlying cloud nework demands. However, with the increasing heterogeneity and
queuing system, while achieving arbitrarily close to mininum

average network cost, with a tradeoff in network delay. We dynamics inherent to both service demands and the under-
further enhance our algorithm with a shortest transmission-plus- lying cloud network, we argue that online algorithms that
processing distance bias that improves the delay performance enable rapid adaptation to changes in network conditions
without compromising throughput nor overall cloud network and service demands are essential.

cost. We provide simulation results that confirm our theoretcal « They consider a centralized optimization. However, the
analysis, illustrate the effect of the shortest transmissin-plus-

processing distance bias, and demonstrate remarkably good complexity associated with the resulting global optimiza-
convergence to the optimal cloud network configuration. tion problem and the need to have global knowledge of
the service demands, limits the use of centralized algo-
rithms, specially in large-scale distributed cloud netegor
and under time-varying demands.

Index Terms — distributed cloud networking, virtual networ k
function, distributed optimization, dynamic control

. INTRODUCTION Our previous work in [6] is the first to address the service

Distributed cloud networking builds on network functionglistribution problem in a dynamic cloud network settingeTh
virtualization (NFV) and software defined networking (SDNproposed dynamic cloud network control (DCNC) algorithm is
to enable the deployment of network services in the form 8ased on augmenting the Lyapunov drift-plus-penalty @ntr
elastic virtual network functions instantiated over comoiw Method [7]-[9], which had only been used inaditional
off the shelf (COTS) servers at multiple cloud locations andransmission) networks, to account for both transmissioah
interconnected via a programmable network fabric [1]-[8]. Processing flows, consuming network and cloud resources.
this evolved virtualized environment, network operatoas ¢ However, several issues remain open for improvemeént:
host a variety of highly adaptable services over a comméie analysis in [6] considers only expected time-averaged
physical infrastructure, reducing both capital and openai Performance guarantees, anl the resulting network delay
expenses, while providing quality of service guarantedsilav can be significant, especially in lightly loaded networks.
this approach is very attractive for network providers,asgs  This paper extends the work in [6] with the following
several technical challenges. Chief among them is how gontributions:i) we provide the bounds for time average
efficiently assign network functions to the various seniars cost and time average occupancy (total queue backlog) with
the network. These placement decisions must be coordinapsdbability 1 (instead of in expected time averagi);we
with the routing of network flows through the appropriatéesign a keyshortest transmission-plus-processing distance
network functions, and with resource allocation decisitthvag bias extension to the DCNC algorithm, which is shown
determine the amount of resourcesg( virtual machines) to significantly reduce network delay without compromising
allocated to each function. throughput nor overall cloud network cost; aiiid we present

The problem of placing virtual network functions in dissimulation results that illustrate the effect of incorgorg
tributed cloud networks was first addressed in [4]. The pwbl the shortest transmission-plus-processing distanceriimshe
is formulated as a generalization of Generalized AssignmddCNC algorithm, as well as its efficiency in reducing overall
(GA) and Facility Location (FA), and gO(1),0(1)) bi- cloud network cost and delay for different parameter sgstin
criteria approximation with respect to both overall costlarand network scenarios that include up to 110 clients.
capacity constraints is provided. Shortly after, [5] imtnced The rest of the paper is organized as follows. Sec. Il intro-



duces the model and problem formulation. Sec. Il describes

the proposed algorithm, including the shortest transimissi Commodities: (d,,0) (d,,1) (d,b,2)
plus-processing distance bias extension. Simulatioriteeare - - )
presented in Sec. IV. We summarize the main conclusions in  virtual Functions: (b,1) (0,2)
Sec. V.

[I. MODEL AND PROBLEM FORMULATION Fig. 1. A network service chaigp € & composed ofM, = 2 functions.

Service ¢ takes source commodityd, ¢,0) and delivers final commaodity
A. Cloud network model (d, ¢, 2) after going through the sequence of functidii®, 1), (¢,2)}. VNF

We consider a cloud network modeled as a directed grafshm) takes commodity(d, ¢, m — 1) and generates commodity, ¢, m).
G = (V,&) with |[V| = N vertices and|é| = E edges
representing the set of network nodes and links, respégctive _ ) -
In the context of a cloud network, a node represents (4 /) at nodei, as long as the processing flow satisfies the

distributed cloud location, in which virtual network fuimts "Cd€ capacity constraint. _ ,
(VNFs) can be instantiated in the the form of virtual mackine Ve remark that our service model applies to a wide range of

(VMs) over COTS servers, while an edge represents a Iogi&JfPUd services that go beyon_d NFV services_, and that inslude

link (e.g., IP link) between two cloud locations. We denote p{or example, Internet of Things (loT) services, expected to

5(i) € V the set of neighbor nodes o V' in G. argely benefit from the proximity and elasticity of distitied
Cloud and network resources are characterized by thg‘PUd networks [10].

processing and transmission capacity and cost, resplctive A_‘S in [6], we ad_opt anulti-commodity-chain flow moqel’ n
In particular, we define: which a commodity represents a network flow at a given stage

« Ki = {0,1,---,K,}: the set of possible processingOf a service chain. We use the triplet, ¢, m) fo |dent|fy.a
. , commodity flow that is output of theuw-th function of service
resource units at node . . . .
Kij = {0,1,--- , Ky, }: the set of possible transmission’ for client d. The source commodity of servige for client
¢ Mg = A Rl P d is identified by(d, ¢,0) and the final commodity delivered

resource units at linki, j) : -
« C; 1 the capacity, in processing flow units, resulting frorrt'lO d by (d, ¢, My), as illustrated in Fig. 1.

the allocation ofk resource unitsgg., VMs) at nodei  C. Queuing Model

« Cyj: the capacity, in transmission flow units, resulting \ve consider a time slotted system with slots normalized
from the allocation of; resource unitsg(g., 1G links) at integral unitst € {0,1,2,---}. We denote bw(d’¢’m)(t)
y Ly 4y . 7

"”k_(ihj) ‘ _ ) di the exogenous arrival rate of commodity, ¢, m) at node
» w;x: the cost of seifing ug resource units at no i during timeslotz, and by A\{**™ the expected value of

» Wiy the cost of setting uf resource units at linki, ;) a(.d"“b"m)(t) referred to as average input rate. We assume that
o ¢;: the cost per processing flow unit at node (dbm) )\ o : : T .
« ¢;;: the cost per transmission flow unit at lirfk ;) a; (_t) is independently and identically distributed (i.i.d.)

' across timeslots.

B. Network service model At each timeslott, every node makes a transmission and

A network servicep € @ is described by a chain of VNFs. processing decision on all of its output interfaces. We use
We denote byM, = {1,2,---, M} the ordered set of VNFs ugf"z”m)(t) to denote the assigned flow rate at lifk j)

of service¢. Hence, the tuplé,m), with ¢ € ® andm €  for commodity (d, ¢, m) at timet, ng{;;?vm)(t) to denote the
My, identifies them-th function of servicep. We refer to assigned flow rate from nodé to its processing unit for
a client as a source-destination pgitd), with s,d € V. A" commodity(d, ¢, m) at timet, andu;‘i’f’m)(t) to denote the
client requesting network servigec ® implies the request for assigned flow rate from nodés processing unit to nodéfor
the network flows originating at source nosléo go through commodity(d, ¢, m) at timet.
the sequence of VNFs specified byt before exiting the  During network evolution, internal network queues buffer
network at destination nodé packets according to their commodities. We definedbeue
Each VNF has (possibly) different processing requiremenisackiog of commodity(d, ¢, m) at nodei, di’¢’m)(t), as the
which may also vary among cloud locations. We denote Rynount of commodity(d, ¢, m) in the queue of nodeé at

(™) the processing-transmission flow ratio of VNGB, m). e beginning of timeslot. The Q'™ (¢) process evolves
That is, when one transmission flow unit goes through VNEccording to the following queuing dynamits:

(¢, m), it occupiesr(®™) processing resource units. In addi-

tion, our service model also captures the possibility of flow(d ) () (dpim) (dpim) "
scaling. We denote by(®™ > 0 the scaling factor of VNF Q"™ (t+1)<|Q""™t) — > Mij’¢’m (t) — Mi,;j’m (t)
(¢,m). That is, the size of the output flow of VNRp, m) JES()

is £(»™) times larger than its input flow. We refer to a VNF n (dbsm) oy 4 (dstim) gy 4 (digum) gy 1
with £(¢) > 1 as an expansion function, and to a VNF with jg(:i)u'” )+ e ) + 0 () @)

¢(®»m) < 1 as a compression function. Moreover, a processing
delay Df¢’m) (in time units) is incurred in executing VNF  Throughout the paper, we uge]* to denotemax{z,0}.



In addition, at each timeslat, cloud network nodes canand processing flow scheduling and resource allocation deci
also make resource allocation decisions. We denotg by(t) sions, first introduced in [6]. We then extend the analysis of
the binary variable indicating the allocation bftransmission [6] to show that DCNC provides arbitrarily close-to-optima
resource units at link(¢,j) in timeslot ¢, and by y; x(t) solutions with probability 1. Finally, we present E-DCNG) a
the binary variable indicating the allocation bfprocessing enhanced dynamic cloud network control algorithm thaointr
resource units at nodein timeslott. duces a shortest transmission-plus-processing distaiase b
. to reduce network delay without compromising throughput or
D. Problem Formulation average cloud network cost.

The goal is to design a control algorithm that, given
exogenous arrival rates with average input rate makrix> A. DCNC algorithm
()‘(d'd)'m)) supports all service demands while minimizing the | ocal transmission decisionsAt the beginning of each
average cloud network cost. Specifically, we require the@lo jmesiot . each nodei observes the queue backlogs of all
network to be rate stable (see Ref. [7]g, its neighbors and performs the following operations forheac
di,ab,m)(t) . ' of its outgoing links(i, 7), j € 6(i):

— =0 with prob. 1 i, (d, ,m).  (2) 1) For each commodityd, ¢, m), compute thetransmis-
sion utility weight

lim

t—o00

The dynamic service distribution problem (DSDP) can then

be formulated as follows: d,bm dyé,m dyé,m +
W™ (1) = [Q ™ (@) — Q™ (t) - Vey |

]

min h};ﬂi‘jp 7 Z E{h(r)} (3a) whereV is a non-negative control parameter that deter-
= ) o mines the degree to which cost minimization is empha-
s.t. The cloud network is rate stable with input rate sized.

(3b) 2) Compute the optimal commodityl, ¢, m)* as:
s " (7) = €O (r D)

Fpri . (d,,m)
d, o, = W@ (¢
Vi, d, ¢,m > 0,7 (3c) (e ¢,m) a(rff,f)x{ CRC)
(d,p,m— ]) (¢,m) < .

> i pi(r) < D Cokik( 3) If W™ (¢) = 0, then,k* = 0. Otherwise,

(dyp,m>0) keK; i
Vi, T (3d) k* = arg max {Ow kW(d )| (t) — Vwij,k}

Z M(d i m) < :LLZJ Z CZ] k Yij, k F

(d,,m) kEK; 4) Take the following resource allocation and flow rate
Y(i,j), 7 (3€) assignment decisions:

d,p,m d,p,m d,p,m _

T N i N G Yije (8) = 1
Vi, (i,5),d, ¢,m, 7 (3f) Yigk(t) =0 VEk#k*
yi,k(T)v yij-,k(T) € {Oa 1} Via (i,j), d, ¢a m,T (39) /Lg;i b (t) = Cij,k*
where (3c) describes the instantaneous commodity-chain co ng s m)( t)=0 VY(d,¢,m)# (d, ¢, m)*

straints, (3d) and (3e) are instantaneous transmission and

processing capacity constrains, and the cost fundiier) is Local processing decisionAt the beginning of each times-
lot ¢, each nodei observes its local queue backlogs and

given by ) .
performs the following operations:
_ 1) For each commodityd, ¢, m), compute theprocessing
h(T) = €; i Wi k Yi, + - . »
™ 1;( bl k%; Yk ) utility weight

a m a,p,m 9 a,p,m +
WAS™t) =y [ ) g G QO™ ) — Ve

Z €ij ,uz] Z Wij k yw, . (4)

(ho)ee hekis The processing utility weight Wi(d"z”m)(t) indicates the

In the following section, we present a dynamic control benefit of executing function¢, m + 1) to process
algorithm that obtains arbitrarily close to optimal sobuis commodity (d, ¢, m) into commodity (d, ¢, m+1) at
to (3) in a fully distributed fashion. time ¢, in terms of the local backlog reduction per
processing unit cost.

IIl. DYNAMIC CLOUD NETWORK CONTROL 2) Compute the optimal commodityl, ¢, m)* as:

In this section, we first describe a distributed dynamic dlou
network control (DCNC) strategy that extends the Lyapunov (d, ,m)* = argmax {W( ia m)(t)}
drift-plus-penalty algorithm to account for both transsnis (d,¢,m)



3) If Wi(d"i”m)*(t) =0, then,k* = 0. Otherwise,

2

k* = argmax {Ci7kW-(d’¢’m)*(t) — Vwm}
k

in the network. However, queue backlogs have to build up
in the appropriate direction before yielding efficient et
and service distribution, which can result in degradedydela
performance.

4) Take the following resource allocation and flow rate 114 delay performance of multi-hop queuing networks can

assignment decisions:

yi,k* (t) = 1
yin(t) =0 Yk £ k*
(dgm)* 1
Higr (1) = e Cike

p ™ () =0 Y(d, ¢, m) # (d, ¢, m)*

@,pr

be improved by introducing a bias term into the weight of
the dynamic control algorithm [9][11], where the bias term
represents the number of hops or the geometric distance to th
destination. Control decisions are then made based onitfte jo
observation of the backlog state and the bias term. In order
to leverage this technical track to reduce end-to-end delay
in cloud networks, the bias term needs to capture the effect

Observe from the above algorithm description that the finiR:I both transmission and processing delay. Accordingly, we

processing deIajDE“‘”m)

B. Performance Analysis

In this section, we extend the analysis of [6] to show
that the DCNC algorithm achieves the average cost—delgy
tradeoff [O(1/V), O(V)] with probability 1 (w.p.1). To this '
end, lettingA denote theloud network capacity region, whose
characterization is described in [6, Theorem 1 ], the foliayv

theorem follows:

Theorem 1. If the average rate matrix A = (Agd’d”m)) is
strictly interior to the capacity region A, and (@), p(¢:m)
D™ and > (dbm) E[(a{>*"™ (t))*] are bounded, then the
DCNC al gorithm’st’abi lizes the cloud network, while achieving
arbitrarily close to minimum average cost A*(\) w.p.1, i.e,

NB

¢
lim sup ! Z M) <B A+ =, (wpl) (5)
7=0

t—o00 t V
1 NB+V[h (A+el)—h'(A
hrn sup- Z Q(id,(z’;m)(T) S +V[ ( +€ ) ( )]

t €
tmoe i gm

(wp.1) (6)

where B is a constant depending on the system parameters
Cijkiyr Cikir Amax, €@™, and r(#™); ¢ is a positive
constant satisfying (A +¢) € A; and, with an slight abuse
of notation, 7" (A) denotes the minimum average cost of the
DSDP formulated in (3).

O

is not involved in the implementation
of DCNC. The reason is that omittiligf¢’m) in the scheduling
decisions of DCNC does not affect the throughput optimal
or the average cost convergence. This is shown in the pr
of Theorem 1, which is given in [12] due to space limitations. = (d,,m)

it

QL™ (1),

propose E-DCNC, and enhanced DCNC algorithm designed
to reduce cloud network delay. Specifically, for each queue
backlog di’¢’m)(t), we define a modified queue backlog

A m ,b,m
QL™ (1) 2 QL™ (t) 4 Yo

(7)
where v (&™)

g denotes the shortest transmission-plus-
cessing distance bias term, andn is a control parameter
presenting the degree to which we emphasize the bias with
respect to the backlog. Furthermore, we define

yldm) A { min {Hyy + DJ"™ | 0 <m < M,

J , (8)
H;q, m= M,

whereH;; represents the number of hops from néde node
j along the shortest path.

E-DCNC is formed by usingQEd’¢’m)(t) in place of
di"“b’m)(t) in the DCNC algorithm, and modifying the con-
dition for choosingk* = 0 to be as follows (see step 3 of
DCNC algorithm description):

« For local transmission decisionﬁ/igd"z”m)*(t) =0or

Q"™ () =0;
« For local processing decision@f/i(d’¢’m)*(t) = 0 or
Q™ (1) =o.
The motivation of changing the condition for setting =
0 is to avoid unnecessary resource consumption when
W™ (1) or W™ (1) are positive, but the queue of
commodity (d, ¢, m)* is empty.
It can be shown that the throughput optimality and average
resource cost efficiency of E-DCNC can also be guaranteed.

Moreover, as shown by the simulation experiments presented

Note that the paramet@f drives the average cost arbitrarilyin the following section, a significantly lower congestiavél
close to the minimum cost () with a corresponding linear is achieved under E-DCNC, demonstrating enhanced delay

increase in average network congestion (average delay).

performance, particularly when the network is lightly ledd

Proof: The proof of Theorem 1 is given in [12] andwithout compromising overall throughput nor cloud network

ommitted here due to space limitations. [ |

C. Delay Improvement via Enhanced Dynamic Cloud Network
Control (E-DCNC)

cost. In fact, note that with the bias term defined in (8) and
under light traffic load, for commaodities that require fuath
processing) < m < My, flows tend to be routed along

the path with the smallest combined transmission-proogssi

The DCNC algorithm determines the routes and the servidelay, while for final commoditiesp = A, data flows follow
distribution according to the evolving backlog accumuaati the shortest path to their corresponding destination nbde
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Fig. 3. Processing flow rate distribution over all cloud r@desmall service
scale scenario.

IV. SIMULATION EXPERIMENTS

In this section, we present numerical results obtained from

simulating the DCNC and E-DCNC algorithms durifig” 6, functions across the cloud network nodes under DCNC.
timeslots. _ Observe how VNK1, 1) (first function of service 1) is mostly
We assume a cloud network based on the Abilene YSnemented in Kansas City (node 6), which is the node
continental network, shown in Fig. 2. All4 links exhibit it owest processing cost along the shortest path from
homogeneous transmission capacities and costs, antll allggattje (Node 1) to New York (Node 11). Note, however,

nodes represent cloud locations with homogeneous proiess, ¢ the expansion function VNE, 2) is largely implemented
capacity choices. In particular, two service scenariosh® tiy New York (node11), which is the final destination of

Abilene network are simulated: a small scale scenario ofgice 1, in order to minimize the transmission cost impact
services with 2 source-destination pairs (or clients); r@da ¢ the larger final commodity(11,1,2) resulting from the
scale scenario with 1 service and 110 source-destinatios. pagyacytion of VNF(1,2). For Service 2, the first function,
The common simulation setting_s for th.e two scenarios are @R (2,1), is a compression function with scaling facto2s.
follows. All links have two capacity choiceS;; o and Cij1,  As expected, VNR2, 1) is mostly implemented at the source
with corresponding resource allocation cosi§o = 0 and pode (node 2), in order to reduce the transmission cost of
wij = 1, and load-dependent costs = 1. All nodes have ggpyice 2 by compressing the source commofity, 0) into
two processing capacity choic€s,o and C; 1, and resource commodity (7,2,1) before commodity(7,2,0) even flows
allocation costsy;,o = 0 andw;,; = 1. However, cloud nodes jnig the network. The processing of commodity; 2, 1) by
have different Ioad-dependent processing costs. In péatic \/\E (2,2) to generate commodity7,2,2) concentrates at
we assume Kansas City (node 5) and Houston (node 6) hayRje 5 hecause this node has the lowest processing cost
cheaper processing costs, = ¢ = 1, while for any other gmong the nodes on the shortest path from Sunnyvale (node
nodee; = 3. Every node in the network has the ability 1) {5 Atlanta (node 7). Note that the average flow rate of
implement all the functions of all the services. commodity(7,2, 1) is approximately).25 due to the effect of
, ) the compression functio(z, 1).
A. The Sl Scale Service Scenario With the simulated average demand rate loffor both
In this scenario, we hav€';; o = 0, Ci;1 = 1, C;p = 0, services, the minimum average cloud network cost can be
C;1 =1, and consider 2 services, each composed of 2 virtuamputed by inspection. Specifically, the optimal flow paths
functions. All 4 functions have the same complexity, giverior the two services are the two respective shortest paties. T
by a processing-transport flow ratio df and a processing optimal function placement are node 6 for VNF, 1), node
delay of 10 timeslots. In terms of flow scaling, the first andl1l for VNF (1,2), node 2 for VNF(2,1), and node 5 for
second functions of Service 1 have a scaling factot eihd VNF (2,2). The resulting average cost18.
3, respectively. That is, the second function of Service 1 isFigs. 4a and 4b demonstrate the tradeoff between the
an expansion function. For Service 2, the first and secotithe average cost and the time average occupancy (time
functions have a scaling factor 25 and1, respectively. That average total queue backlog) as a function of the control
is, the first function of Service 1 is a compression functie. parameter’’ under both DCNC and E-DCNC. According to
assume one source-destination pair for Service 1, withceouFig. 4a, the time average costs under both DCNC and E-
in Seattle (node 1) and destination in New York (node 11PCNC converge to approximately 22, while the time average
and another for Service 2, with source in Sunnyvale (nodecupancies increase linearly with respecttoThese results
2) and destination in Atlanta (node 7). Both source nodetearly demonstrate th©(1/V'), O(V')] cost-delay tradeoff as
receive exogenous arrivals with rate satisfying i.i.d.sBoh suggested by the performance bounds of Theorem 1.
distribution across timeslots with mean value On the other hand, comparing the performance of DCNC

Fig. 3 shows the processing flow rate distribution for the
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Fig. 4. Network service distribution in small-scale seeviecenario. a) Time average cost v.s. control parameter Virbg average total occupancy vs.
control parameter V; ¢) Time average cost evolution oveetim

and E-DCNC with differenty values, it can be seen from

Fig. 4b that E-DCNC exhibits significantly lower average ~~DCNC
occupancy than DCNC, demonstrating a better delay perfor- e -pon 2
mance. Note that the average occupancy further reduces as 10} |-=-E-DCNC, n=3

is increased from 1 to 3. Note also, from Fig. 4a, that the

larger then value, the larger the control parametérhas to

be to approximate the minimum average cloud network cost.
Fig. 4c exhibits the evolution of the average cloud network

cost over time under DCNC and E-DCNC with differemt

Time Average Occupancy

values, whenV/ = 7. Note that the converging speed of E- Network Capacity Boundaw/'é
DCNC is no lower than the converging speed of DCNC. T T Lo T e Tt
The delay performances of DCNC and E-DCNC can also © Time Average Input Rate o

be compared by simulating the average occupancy evolving _ _ _

over different exogenous average input rate within the néfd: 5. Average occupancy in small scale service scenademuBCNC and
. N . . ., E-DCNC with varying exogenous average input rate &he-= 10.

work capacity region. As shown in Fig. 5, note that, while

maintaining the same average input rate for the two source

commodities,(11,1,1) and(7,2,1), as this common average

input rate increases up to approximately4, the average total

quleue ba;]:.IEI_og hundgr DCNC a?r?].EfDdc.:NC WiLh dirf]ferent parametert/, under DCNC for both Case 1 and Case 2, and
values exnibit sharp increases. This indicates that theagee under E-DCNC for Case 1. Similarly to the small scale service

input rate has reached the boundary of the network capaclynario. the results demonstrate {1/, 0(V)] cost-

region.We can also see that the average occupancy under 2 ., :
. y tradeoff. In addition, Fig. 7 shows that the occupancy
DCNC is lower than under DCNC and further decreases as ﬁ%@el in Case 1 is generally lower than that in Case 2, which

value of increases, as long as the average Input rate d(???ntuitive due to the fact that the resource unit capadittlg
not expeed th.e boundary of the network c_apaplty region. Tm?r transmission and processing) in Case 1 (=110) is larger
result is consistent with the result shown in Fig. 4b. than that in Case 2 (=30). Focusing on Case 1, the scenario
. . with largest maximum capacity (=110), Fig. 7 shows how
B. The Large Scale Service Scenario the shortest transmission-plus-processing distancedii@ss

In this scenario, we conduct simulations of DCNC and EE-DCNC to significantly reduce the average occupancy (and
DCNC for a single service, but with 110 clienise,, all the hence average delay) compared to DCNC. Also, note from
possible source-destination pairs in the Abilene netwdHe Fig. 6 that the difference in convergence speed of the agerag
service has 1 virtual function with processing-transpanvfl cost with respect t&” between DCNC and E-DCNC is almost
ratio of 1, processing delay of 10 timeslots, and scalingofac negligible. Therefore, Figs. 6 and 7 indicate that the delay
of 1. The source node of each client or source-destinationperformance gain of E-DCNC is nearly “free”, which is due
pari (s, d) receives exogenous arrivals of commodity1,d) to the fact that the network in Case 1 is lightly loaded.
according to an i.i.d. (across timeslots) Poisson distidiou ~ Figs. 8(a) and 8(b) show the processing rate distribution
with mean rate 1. We consider two cases in terms of availaldmong all the nodes under DCNC in Case 1 and Case 2,
capacities: Case 10 = 0, Ci1 = 110, C;o = 0 and respectively. In both cases, the processing load in Kansas
C;1 = 110; and Case 2C;;0 =0, C;;,1 =30, C; o =0 and city (node 5) and Houston (node 6) is much higher than the
C;1 = 30. processing load in the rest of the nodes. This is because the

Figs. 6 and 7 show the evolution of the average cost and
the average occupancy, respectively, with respect to thealo
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joint flow scheduling and resource allocation algorithmttha
stabilizes the underlying queuing system within this regio
while achieving arbitrarily close to minimum average cloud
network cost, with a tradeoff in network delay. We show that
the time average cost and occupancy meet the stability con-
straints with probability 1. We then introduce an appraria
shortest transmission-plus-processing distance bias into the
dynamic cloud network control (DCNC) algorithm. We show
via simulations that the resulting enhanced E-DCNC algorit
significantly reduces network delay, specially in lighthatled
scenarios, without compromising overall cloud networktcos
The results presented in this paper can serve as guidetines f
the deployment and dynamic orchestration of next generatio
cloud network services.
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