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Abstract—Augmented information (Agl) services allow users
to consume information that results from the execution of a
chain of service functions that process source information to
create real-time augmented value. Applications include real-
time analysis of remote sensing data, real-time computer vision,
personalized video streaming, and augmented reality, among
others. We consider the problem of optimal distribution of Agl
services over a wireless computing network, in which nodes are
equipped with both communication and computing resources. We
characterize the wireless computing network capacity region and
design a joint flow scheduling and resource allocation algorithm
that stabilizes the underlying queuing system while achieving a
network cost arbitrarily close to the minimum, with a tradeoff
in network delay. Our solution captures the unique chaining and
flow scaling aspects of Agl services, while exploiting the use of
the broadcast approach coding scheme over the wireless channel.

Index Terms—Wireless computing network, edge computing,
service function placement, service chaining, resource allocation,
dynamic control, distributed algorithm, broadcast approach cod-
ing scheme.

I. INTRODUCTION

Internet traffic will soon be dominated by the consumption
of what we refer to as augmented information (Agl) services.
Unlike traditional information services, in which users con-
sume information that is produced or stored at a given source
and is delivered via a communication network, Agl services
provide end users with information that results from the real-
time processing of source information via possibly multiple
service functions that can be hosted anywhere in the network.
Examples include real-time analysis of remote sensing data,
real-time computer vision, personalized video streaming, and
augmented reality, among others.

While today’s Agl services are mostly implemented in the
form of software functions instantiated over general purpose
servers at centralized cloud data centers [2], the increasingly
low latency requirements of next generation real-time Agl
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services is driving cloud resources closer to the end users in
the form of small cloud nodes at the edge of the network,
resulting in what is referred to as a distributed cloud network.
This naturally raises the question of where to execute each
service function and how to route network flows through the
appropriate sequence of service functions, a question that is
impacted both by the computation and the communication
resources of the cloud network infrastructure. Given fixed
service rates, linear programming formulations and heuristic
procedures for joint function placement and routing were de-
veloped in [3]-[6], while polynomial-time algorithms with ap-
proximation guarantees were developed in [7]-[9]. The works
of [3], [8] are based on a multi-commodity-chain (MCC) flow
model that generalizes traditional multi-commodity flow to
account for flow chaining via service processing and joint
communication/computation resource allocation.

The study of dynamic control policies that adjust the con-
figuration of service function chains in response to unknown
changes in service demands was initiated by the present
authors in [10], [11]. By extending the MCC model of [3],
[8] to dynamic cloud network settings, these works provided
the first characterization of a cloud network capacity region
and the design of distributed throughput-optimal control poli-
cies that jointly schedule communication and computation
resources while pushing overall network cost arbitrarily close
to minimum.

A key aspect not considered in all previous works is the
increasingly important role of the wireless access network for
efficient service delivery. Agl services are increasingly sourced
and accessed from wireless devices, and with the advent
of mobile and fog computing [12], service functions can
also be hosted at wireless computing nodes (i.e., computing
devices with wireless networking capabilities) such as mobile
handsets, connected vehicles, compute-enabled access points
or cloudlets [13]. When introducing the wireless network into
the computing infrastructure, the often unpredictable nature
of the wireless channel further complicates flow scheduling,
routing, and resource allocation decisions. In the context of
traditional wireless communication networks, the Lyapunov
drift plus penalty (LDP) control methodology (see [14] and
references therein) has been shown to be a promising ap-
proach to tackle these intricate stochastic network optimization
problems. Ref. [15] extends the LDP approach to multi-
hop, multi-commodity wireless ad-hoc networks, leading to
the Diversity Backpressure (DIVBAR) algorithm. DIVBAR
exploits the broadcast nature of the wireless medium without
precise channel state information (CSI) at the transmitter, and
it is shown to be throughput-optimal under the assumption that
at most one packet can be transmitted in each transmission
attempt, and that no advanced coding scheme is used. Ref.



[16] extends DIVBAR by incorporating rateless coding in the
transmissions of a single packet, yielding enhanced throughput
performance.

Motivated by the important role of wireless networks in
the delivery of Agl services, in this paper, we address the
problem of distribution of Agl services over a multi-hop
wireless computing network, which is composed of nodes with
communication and computing capabilities.

Our contributions can be summarized as follows:

1) We extend the MCC flow model of [3], [8], [11] to
the delivery of Agl services over wireless computing
networks, taking into account the routing diversity created
by the inherent broadcast nature of the wireless channel.
In the wireless MCC model, the queue backlog of a
given commodity builds up from receiving the commodity
information units via broadcast transmissions from neigh-
bor nodes, as well as from the generation of commodity
information units via local service function processing.

2) We incorporate the use of broadcast approach coding
scheme [17], [18] into the scheduling of Agl service flows
over wireless computing networks in order to exploit
routing diversity and enhance transmission efficiency.
By applying the broadcast approach coding scheme at
a transmitter with no precise channel state information
(CSI), the source information is encoded into superposi-
tion layers. Then, multiple receivers can decode different
amount of layers according to their channel states after
overhearing the transmitted signal, enabling opportunities
and challenges for enhancing routing diversity in wireless
computing networks.

3) For a given set of Agl services, we characterize the
capacity region of a wireless computing network in terms
of the set of exogenous input rates that can be processed
through the required service functions and delivered to
the required destinations. Unlike the capacity region of a
traditional communications network, which only depends
on the network topology, the capacity region of a wireless
computing network also depends on the Agl service
structure, and it is shown to be enlarged via the use of
the broadcast approach coding scheme, as opposed to the
traditional single-layer (outage approach) coding scheme.

4) We design a dynamic wireless computing network con-
trol (DWCNC) algorithm that makes local transmission,
processing, and resource allocation decisions without
knowledge of service demands or their statistics. The
local transmission scheduling takes the broadcast ap-
proach coding scheme into consideration to explore rout-
ing diversity. DWCNC is throughput optimal and allows
pushing total resource cost arbitrarily close to minimum
with a tradeoff in network delay.

The remainder of the paper is organized as follows: Section
IT presents the system model. Section III characterizes the
network capacity region of a wireless computing network.
Section IV constructs the DWCNC algorithm, and Section
V proves the optimal performance of DWCNC. The paper
is concluded in Section VI.

Fig. 1. Illustration of the delivery of Agl services over a wireless computing
network.

II. SYSTEM MODEL

Before describing the mathematical model in detail, we
first introduce the main concepts around the delivery of Agl
services over wireless computing networks via an illustrative
example depicted in Fig. 1. As shown in the figure, a wireless
computing network is composed of wireless nodes, e.g., user
equipments and access points, equipped with both communi-
cation and computation resources. Agl services, on the other
hand, are described by a chain of service functions that deter-
mines the sequence in which source information flows must
be processed in order to generate the final information flows
that get consumed by the end users. For example, a multimedia
streaming service may be described by a sequence of functions
such as video/audio mixing, media transcoding, and media
acceleration [19]. Fig. 1 shows a wireless computing network
offering four generic Agl services, each described by a chain
of virtual functions (VFs). Each service is requested by a
client, defined by a source-destination pair. Source flows are
routed through the network to wireless computing nodes where
they can be processed via the appropriate service functions,
before being delivered to the corresponding destinations. Note
that flows can be split into multiple paths to exploit routing
diversity, and get processed by multiple instances of the same
service function at different locations. As we will show in the
following, the proposed DWCNC algorithm uses the broadcast
approach coding scheme to optimally exploit routing diversity
without precise CSI knowledge at the transmitters.

A. Network Model

We consider a wireless computing network composed of
N = |N| nodes representing distributed computing devices
that communicate over wireless links labeled according to
node pairs (i,7) for 4,5 € N. Node i € N is equipped with
K" transmission resource units (e.g., transmission power) that
it can use to transmit information over the wireless channel.
In addition, node i is equipped with K" processing resource
units (e.g., central processing units or CPUs) that it can use to
process information as part of an Agl service (see Sec. II-B).

Time is slotted with slots normalized to integer units ¢ €
{0,1,2,...}. We use the binary variable y;";(¢) € {0,1} to
indicate the allocation or activation of k € K = {0,..., KI'}
transmission resource units at node ¢ at time ¢, which incurs
wif, cost units. Analogously, y},(t) € {0,1} indicates the
allocation of k € KI" £ {0,..., K} processing resource
units at node ¢ at time ¢, which incurs wfjk cost units. Notice
that the binary resource allocation variables y;', (t), yg’fk(t)

r pr
must satisfy ZkK:iO Y (t) < 1, ZkK:iO Ypp(t) < 1.
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Fig. 2. TIllustration of an Agl service chain for destination d € D. There
are M functions and M 4 1 commodities. The Agl service takes the
source commodity (d,0) and delivers the final commodity (d, M) after
going through the sequence of functions {1,2,..., M}. Function m takes
commodity (d,m — 1) and generates commodity (d, m).

B. Augmented Information Service Model

While the analysis in this paper readily applies to an
arbitrary number of services, for ease of exposition, we focus
on the distribution of single augmented information service,
described by a chain of functions M = {1,2,...,M}.
A service request is described by a source-destination pair
(s,d) € N x N, indicating the request for source flows
originating at node s to go through the sequence of functions
M before exiting the network at destination node d. We adopt
a MCC flow model, in which commodity (d, m) € Dx{M, 0}
identifies the information units generated by function m € M
for destination d € D C N, where |D| £ D. We assume
information units have arbitrary fine granularity (e.g., packets
or bits). Commodity (d,0) denotes the source commodity for
destination d, which identifies the information units arriving
exogenously at each source node s that have node d as their
final destination. (see Fig. 2).

Each service function has (possibly) different processing
requirements. We denote by r(™) the processing complexity
factor of function m, which indicates the number of operations
required by function m to process one input information unit.
Another key aspect of Agl services is the fact that information
flows can change size as they go through service functions. Let
€0m) > 0 denote the scaling factor of function m. Then the
size of the function’s output flow is £€(™) times as large as its
input flow.

C. Computing Model

As is shown in Fig. 3, we represent the processing capa-
bilities of wireless computing nodes via a processing element
(e.g., CPU in a cloudlet node) co-located with each network
node. A static, dedicated computing channel is considered,
where the achievable processing rate at node ¢ with the
allocation of k processing resource units is given by R,y
in operations per timeslot. We use /,Lgi’fl )(t) to denote the
flow rate (in information units per timeslot) of commodity
(d,m) (0 < m < M) from node i to its processing unit at
time ¢, and u}()ﬁ’im) (t) to denote the flow rate of commodity
(d,m) (0 < m < M) from the processing unit back to node ¢
(see Fig. 3). We then have the following MCC and maximum

processing rate constraints:

pdem (t) = € p{ D (@), Vi d,m>0,t, (1)
K"
m—1 m .
S W) r <SR (), Vit (@)
(d,m>0) k=0

Note that function m at node i processes input commodity

(d,m—1) at a rate ul(cll)’: n=1) (t) information units per timeslot,
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Fig. 3. Illustration of a wireless computing node equipped with computation
and communication resources. Commodity (d, m — 1) can be processed via
the processing unit hosting function m to generate commodity (d, m). The
use of the broadcast approach at the TX leverages multi-receiver diversity.
The information decoded by the RX with the “bad” channel is a subset of the
information decoded by the RX with the “medium” channel, which is further
a subset of the information decoded by the RX with the “good” channel. The
transmitted information can therefore be grouped into three partitions.
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D. Wireless Transmission Model

We assume that multiple transmitters (TXs) may transmit
simultaneously to overlapping receivers (RXs) via the use of
orthogonal broadcast channels of fixed bandwidth, a priori al-
located by a given policy, whose design is outside the scope of
this paper. On the other hand, due to the broadcast nature of the
wireless medium, multiple RXs may overhear the transmission
of a given TX. We model the channel between node ¢ and all
other nodes in the network as a physically degraded Gaussian
broadcast channel, where the network state process (the vector
of all channel gains), denoted by S(t) £ {s;;(t),Vi,j € N'},
evolves according to a Markov process with state space S
and whose steady-state probabilities exist. We assume that the
statistical CSI is known at the TX, while the instantaneous CSI
can only be learned after the transmission has taken place and
is thereby outdated (delayed).

It is well-known that superposition coding is optimal (capac-
ity achieving) for the physically degraded broadcast channel
with independent messages [21]. In particular, in this work we
adopt the broadcast approach coding scheme (see [17], [18]
and references therein), which consists of sending incremental
information using superposition layers, such that the number
of decoded layers at any RX depends on its own channel
state, and the information decoded by a given RX is a subset
of the information decoded by any other RX with no worse
channel gain. That is, for a given transmitting node i, if we
sort the N — 1 potential RX nodes in non-decreasing order
of their channel gains {¢;1,...,¢; ~—1}, such that ¢; ,, with
n € {1,...,N — 1} denotes the receiver with the n-th lowest
channel gain, then the information decoded by receiver g;
is also decoded by receiver ¢; ., for v > n. Moreover, let
Qin £ {qin, -+ ,q n-1} be the set of receivers with the
N — n highest channel gains. Then, we can partition the
information transmitted by node ¢ during a given timeslot
into N — 1 disjoint groups, with the n-th partition being the
information whose successful receiver set is exactly €; ., i.e.,
the information that is decoded by the nodes in €2; ,,, but not



by the nodes in AN\ {i}\{€}. Fig. 3 illustrates the use of
the broadcast approach for multi-receiver diversity.

Let p; ,(a) denote the optimal power density function over
the continuum of superposition layers resulting from the allo-
cation of k transmission resource units at node 7. Then, based
on the broadcast approach [18], when allocating k transmission
resource units, the maximum achievable rate over link (4, 5)
at time ¢ is given by

ap; 1(a)

gij(t)
R, (t) =B =
R e

where g;;(t) is the channel gain over link (¢, j) at time ¢, and
By is the available bandwidth.

In practice, instead of a continuum of superposition layers,
each node 7 is assumed to use a set of L; discrete superposition
code layers. In this case, we use P/ to denote the total
power associated with the allocation of k transmission resource
units at node 4, and P; (I) to denote the power allocated to
code layer I, with Zf;l P;k(l) = P;%. In addition, the L;
code layers are respectively associated with L; channel gain
thresholds {g; 1, - ,Gi,,}» Gix < -+ < gir,.' Then, the
maximum achievable rate over link (4, j) at time ¢, R;jx (t),
can take L; + 1 possible values, given by the sum of the rates
associated with the code layers whose channel gain thresholds
are no higher than the channel realization at time ¢:

da, (3

R}y, if gij(t) < Gi,
Rijr(t)= Rﬁ,k’ if §ii <9i;(t) < Gigp1, 1 <UI< L — 1,
R, if gij(t) > GiL.,

where R?’ = 0, and

_ P (') gi
R, =8B lo (1 +— ’ v
k w Z g 1+ Gil’ Zl”>l’ Pi,k (l”)

<l
for 1 <1< L;. (4

Correspondingly, the channel realization of link (i, 7) at time
t, s;5(t), has L; + 1 possible channel states {50, ,5i 1, }:

5i0, if gi;(t) < gins
sij (1) = S, if Gig < 9ij(t) < Giggr, 1 <U<L; — 1,
Sin;, if gij(t) > Gip,-

E. Communication Protocol

The communication protocol between each TX-RX pair is
illustrated in Fig. 4. At the beginning of each timeslot, TX and
RX exchange all necessary control signals, including queue
backlog state information (see Sec. II-F). Then, the TX decides
how many transmission resource units to allocate for the given
timeslot and how much rate to allocate to each available
commodity. Afterwards, the transmission starts and lasts for
a fixed time period (within the timeslot); during that time,
both data and pilot tones (whose overhead is neglected) are
transmitted.

I'We assume that the power allocated to each layer and the channel gain
thresholds are given parameters, and leave their optimization to maximize the
expected achievable rate out of the scope of this paper.

Transmitter Control Data and Pilot
| Instruction Transmission
|
t 1

Receiver \M
| L Instruction
! |
‘ t+1

Fig. 4. Timing diagram of the communication protocol over a wireless link.
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After the transmission ends, every potential RX provides

immediate feedback, containing the identification of the infor-
mation decoded by the RX, which allows the TX to derive the
experienced channel states. The TX then makes a forwarding
decision and sends it through a final instruction to all the RXs,
instructing each RX which portion of its decoded informa-
tion to keep for further processing and/or forwarding (hence
assigning the processing/forwarding responsibility). Control
information, feedbacks, and final instructions are sent through
a stable control channel, whose overhead is neglected.
We use ,ugf’m)(t) to denote the amount of information of
commodity (d,m) retained by node j after the transmission
from node ¢ during timeslot ¢. In addition, it shall be useful
to denote by ,uggm)n(t) the information retained by node
gi,w belonging to the n-th partition of node ¢’s transmitted
information. Then, since ¢; ,, € €; 5, for all n satisfying n < u,
we have

(dm) oy _ N\ (d,m)
’uiQi,u (t) - Z’I’L:]. Mil]iﬂun(t)’
Moreover, given the allocation of k transmission resource units

at time ¢, the maximum achievable rate for the n-th partition
is Rig, , k(t) — Rig, ., x(t). Hence, we have

Vi, u,d, m,t. 5)

KY
d,m
STuE™ 0 <5 [Rigeo(t) = Rigy 0 ()] 450,
(d,m) k=0
Vi, t,u>n, (6)

where R;q, , x(t) = 0, for all i,k,t¢. Note that Eqs. (5) and
(6) lead to the following rate constraint on link (7, ) for all

d.m K T
£ gy 150 (1) < Tty R (8) 5 (1)

F. Queuing Model

We denote by agd’yn)(t) the exogenous arrival rate of com-
modity (d,m) at node i at time ¢, and by )\Z(-d’m) its expected
value. We assume that aEd’m)(t) is independently and identi-
cally distributed (i.i.d.) across timeslots and its forth moment
is upper bounded,” i.e., E{(3 ;) al™™ (1))} < (Amax).
Recall that in an Agl service only the source commodity (d, 0)
enters the network exogenously, while all other commodities
are created inside the network as the output of a service
function. Hence, az(-d’m) (t) =0, for all i,¢t when m > 0.

During Agl service delivery, internal network queues buffer
incoming data according to their commodities. We define the
queue backlog of commodity (d,m) at node i, di’m)(t), as
the amount (in information units) of commodity (d, m) in the

2The upper bound of the fourth moment is used in the proof of convergence
with probability 1 in Theorem 2.



queue of node ¢ at the beginning of timeslot ¢, which evolves
over time as follows:

(d,m) < (dym)rpy (d,m) (d,m) +
Qi (t+1)_[Qz GRS R ORT (t)}
DI VRS OR AR OGO

where [z]* denotes max{z, 0}.

Note that, in an Agl service chain, only the final commodity
(d, M) is allowed to exit the network once it arrives to
its destination d € D, while any other commodity (d,m),
m < M, can only get consumed by being processed into the
next commodity (d, m + 1). Commodity (d, M) is assumed
to leave the network immediately upon arrival/decoding at its
destination, i.e., di’M) (t) =0, for all d,¢.

G. Network Objective

The goal is to design a control algorithm that dynamically
schedules, routes, and process service flows over the wireless
computing network with minimum total average resource cost,

1 —t-1
limsup > E{n()}, ®)
where h(t) is the total cost of the network at time ¢,
K KY
DB DAL +Zw1kylk ©)

iEN | k=0

III. WIRELESS COMPUTING NETWORK CAPACITY REGION

Given a set of Agl services, the wireless computing network
capacity region A is defined as the closure of all service input
rates {)\gd’m)} that can be stabilized by a control algorithm.

Theorem 1. The wireless computing network capacity re-

gion A consists of all average exogenous input rates

{)\(dm)} for whlch there exist multi-commodity flow vari-

ables f(d m) férd Zm fz((;rm together with probability values
d, d, d,

off afy(s), B (k). B (s, k), g™ (s, k), for all

i,] # 1, k,d,m, and all network states s € S, such that:

Z (dm+fpdm)+)\(dm <Z fljdm_"_fldrm.)7
Vi,d,m < M or Vizd,m= M, (10a)

FlbmD = f(m“)f‘d ’"), Vi, d,m < M, (10b)

d,m r d,m .
f(vpr )* m+1) Zk 0 pkﬁ(,pr )( ) i,k Vi, d, m <M,
(10¢)

(d m) i gldm)
< Z GS Zk 0 i7 ztr (S k)
quS (4) d,m
Zn:l I:Riqt'nvk(s)_Riqml—hk(s)] 772(] )(57 ka n)7
Vi, j.d,m, (10d)
(d (d (d,m d,m
f(,pr O fp O) O fd M) O fz )>07 fz(j )205
Vi, j,d,m, (10e)
K K |

Yol <L D ali(s) <1, Vis, (10f)

d,m) d,m) )

Z(d m) B'L(pr ( ) < 1; Z(d B’L(tr ( ) < 17 VZ,S,]C7
(10g)

Z nld ,m) (s,k,n) <1, Vi,s, k,n, (10h)

where s € S denotes the network state, whose (i, j)-th element
(s)i; indicates the channel state of link (i, j), ms denotes the
steady state probability of the network state process S(t) for
each s € S, and qijsl (j) in (10d) is the index of node j in the
sequence {q; 1, - ,qi,N—1}, given network state s. Finally,
with a slight abuse of notation, R;;, (s) in (10d) denotes the
maximum achievable rate over link (i, ), given network state
s and the allocation of k transmission resource units.

Furthermore, the minimum average network cost required
for network stability is given by

h* =minh (11)
where
KP" Klr
=3 (S ame D ey meli(e) |, (2)
€N \k=0 seS
and the minimization is over all o, of(s), Bl(cll)rm)(k),

B(d m)(s k), and r](d’m)(s, k,n) satisfying (10a)-(10h). O

a,tr ij

Proof. See Appendix A. [

In Theorem 1, Eq. (10a) are flow conservation constraints,?
Egs. (10c) and (10d) are rate constraints, and Eq. (10e)

indicates non-negativity and flow efficiency constraints. The
(d,m)

probablhty values o, o} (s), Bzgf’m)(k), Biw " (s, k) and
n; j(d ™) (s, k,n) define a stationary randomized policy that uses

single-copy routing — only one copy of each information unit is
allowed to flow through the network - and it is optimal among
all stabilizing algorithms (including algorithms that use multi-
copy routing). Specifically, the parameters of the stationary
randomized policy are defined as:

o af k the probability that k£ processing resource units are

allocated at node ¢

« ajf,(s): the conditional probability that k transmission

resource units are allocated at node ¢, given the network
state s;

. ,Bi(f;’rm)(k): the conditional probability that node 4 pro-
cesses commodity (d,m), given the allocation of k pro-
cessing resource units;

5%7”) (s, k): the conditional probability that node i trans-
mits commodity (d,m), given network state s and the
allocation of k£ transmission resource units;

. nz(j’m)(s,k,n): the conditional probability that node ¢

forwards the information of commodity (d,m) in the n-
th partition to node j, when the network state is s and k
transmission resource units are allocated.

It is important to note that this optimal stationary ran-
domized policy is hard to compute in practice, as it requires
the knowledge of {)\gd’m)} and solving a complex nonlinear

3Note that the final commodity (d, M) staisfies flow conservation at all
nodes except at its destination d, where it is immediately consumed upon
arrival.



program. However, its existence is essential for proving the
performance of our proposed algorithm.

IV. DYNAMIC WIRELESS COMPUTING NETWORK
CONTROL ALGORITHM

In this section, we propose a dynamic wireless computing
network control (DWCNC) strategy that accounts for both
transmission and processing flow scheduling and resource al-
location decisions in a fully distributed manner. The proposed
DWCNC algorithm online minimizes a linear metric extracted
from an upper bound of the LDP function derived for the
wireless computing network.

Let Q(t) represent the vector of queue backlog values of
all the commodities at all the network nodes. The network’s
Lyapunov drift is defined as

amm) 2 s{lQe+ DI - IQWIE|[H©}, a3

where H(t) = {Q(t),S(t — 1)} is the ensemble of queue
backlog observations at time t and the CSI feedbacks at
time ¢t — 1; ||x|| indicates Euclidean norm of a vector x,
and the expectation is taken over the ensemble of all the
exogenous source commodity arrival realizations and channel
realizations at time ¢. Let A denote the vector form of {)\Ed’m)}
and have AT as its transpose. After standard LDP algebraic

manipulations on (7) (see Ref. [14]), we obtain
A(H®) +VE{A(H)| H(t)} <NB+ATQ(t)+
> EAVRT () =2 () + VR () —Zi (¢
2NBATQ(t) + U(t),

(O @)}
(14)

where V' is a non-negative control parameter introduced to tune
the degree to which cost is emphasized with respect to conges-
tion reduction; and Z¥' (¢), hY', Z¥(t), hY(t), and the constant
B (with 70 2 min,, {r(™} and &ax £ max,, {€™)}) are
given by

Zpr(t) 4 Z(d m)uz(i:n) (t) [di,m) (t) _ g(erl)QEd,m-&-l) (t):| ;
2023, Y e 000 - @],
CHUES DT '

Ki r T
R £yl (1),
2
A 1 RZ-,Kgr
pagmaxy(, max {Roer @)} + 7205 ) +

k=0

Emax R rer
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At each timeslot £, DWCNC is designed to make decisions
that minimize ¥(¢) based on the observation of H(t) and
subject to the constraints 4}, (1) € {0,1}, v{",. () € {0,1},

St (®) < 1Yy (1) < 1 and (1), @), (5). 6).

A. Algorithm Description

Note that the minimization of W(¢) is decomposable
among network nodes and between processing and trans-
mission, and therefore enables a distributed implementation

of DWCNC, where each node 7 can make local decisions
to minimize E{VhE"(t) — Z¥(t)|H (t)} (for processing) and
E{VRY(t) —Z(t)|H (t)} (for transmission). The minimiza-
tion is summarized by Lemma B.1 in Appendix B. The
resulting distributed DWCNC algorithm works as follows:

Dynamic Wireless Computing Network Control
(DWCNCO):

Local processing decisions: At the beginning of timeslot ¢,
each node ¢ observes its local queue backlogs and performs
the following operations:

1) Compute the processing utility weight of each commodity
(d,m):

W(d m)( )

ot [ QU (1) €l QL )]

Note that Wi(d’m)(t) indicates the “potential benefit” of
executing function (m+1) to process commodity (d,m)
into commodity (d, m+1) at time ¢, in terms of local
congestion reduction per processing operation.

2) Compute the optimal commodity (d,m)}, to process:

d,m
(d7 m)gr = argmax g ) {Wz( )(t)} .

3) Make resource allocation decision for processing:

d,m)I
ki, = arg max {Ri,ka ety — Vb, }
keK” '

4) Make the following flow rate assignment decisions:

d,m Tr m
Mz(' ,pr )p (t) = RLkgr/r( ',I,+1);
d,m
pEM () =0, Y(d,m) # (d,m),.

Remarks: the computational complexity of the local pro-
cessing decisions is O(K? + M D).

Local wireless transmission decisions: At the beginning of
timeslot ¢, each node ¢ observes its local queue backlogs,
the queue backlogs of its potential RXs and the associated
statistical CSI, and performs the following operations:

1) For each outgoing link (i,j) and commodity (d,m),
compute the differential backlog weight:
(dm) 1y & [ ~(dm) (d;m)
W @) 2 QU @) - (0]

2) For each transmission resource allocation choice k €
{0,..., K}'}, compute the transmission utility weight of
each commodity (d, m):

Wi ()2 X Pr(S(t) =s|S(t—1) =8)x

s€s
{Wi(gd7m) (t)},
(15)

where s denotes the CSI feedbacks at time ¢ — 1, and,
with an abuse of notation, €2; ,,(s) is used to indicate the
dependence of (), , on the network state s.

N-—1
; [Rig, ..k (8) —

R, (s a
L(h,n—hk( ):Ijerfrzllj((s)

3) Compute the optimal number of transmission
resource units Kk, to allocate and the timal
commodity (d,m)}. to transmit: {ktr, (d, m)TT =



arg max {Wz(k?:) (t) — Vw?k}. If ki = 0, node i keeps
k,(d,m) ’
silent in timeslot ¢.

4) After receiving the CSI feedbacks, node ¢ identifies the
information decoded by all the RXs and the experienced
S(t), and assigns the forwarding responsibility for the
n-th partition of the transmitted information to the RX
in Q; ,(S(t)) with the largest positive W( ™) (4), while
all other RXs in €;,(S(t)) and node i discard the
information. If no receiver in €, ,(S(t)) has positive
Wi(jd’m) (t), node i retains the information of partition n,
while all the receivers in €2, ,,(S(¢)) discard it.

Remarks:

o In Step 2 of the local transmission decisions, Wl((,i Tlf)( t)
is computed according to (15) using the transition prob-
abilities Pr(S(t) =s|S(t — 1) = §), known as the
statistical CSI, but the complexity can be high due to
the possibly exponentially large network state space with
respect to the number of links. However, the computation
can be simplified when using discrete code layers for
the broadcast approach, which is described in the next
subsection.

e Discarding decoded information at the RXs that do
not get the processing/forwarding responsibility, during
Step 4 of the local transmission decisions, implies that
DWCNC is a single-copy routing algorithm.

B. Transmission Utility Weight with Discrete Code Layers

Recall that, in practice, when using the broadcast approach,
each node uses L; discrete code layers, with R;; x(t) taking
values in {Réch :0 <1< L;} as described in Sec. II-D).

Let €;;(S(t)) denote the set of receivers that have channel
gain no smaller than g, ; at time ¢, i.e., g;;(t) > g;; for all
j € 9Q;1(S(t)), and g;;(t) < g for all j ¢ Q, ;(S(¢)).

Given S(t) = s and y;; (t) = 1, we have the following
two possible cases for the maximum achievable transmission
rate of the n-th partition: i) Riq, , x (8) = Riq, ,,_, .k (8) = 0; i)

Rigi ok (8)=Rig, . 1k (8) = 01 o ( - R, 1) for some
lp and [ satisfying 1 <[y <y < L, W1th Q,,l( s) = Q; ,(s)
for all Iy <1 <;. Then we have, for all ¢, s, k, (d,m), t,

Y [Rig (8) — i ()] max {w™ 1))
e B it jeQnts) LY

{Wi(;i’m) (t) },

which we can rewrite Eq. (15) as follows:

5l—1
Ri,k ) X

max
JEQi(s)

1
& ( pl—1
= Z (Ri,k - Ri,k )
=1
based on

Wi (1) = l; (7L,
> Pr(S(t) =s|S(t-1) max {Wi™ (1)}

sES JEQ: 1(s)

| (Rl R B {jenrfi}si(m o) ’ Mt)}'

Mh

l

(d,m)

Let 1,7

ceiver j has the largest differential backlog W(d m)( t) among
the receivers in €; ;(S(t)), and 0 otherwise. Then we have

E { max;ca, ,(s(1) {WW”) (t)}‘ ’H(t)}
—E{Y Wi @1 se)|no)}
=3 W 55[’” (H(1),

where apz(vj”lm) (H(t)) is the conditional probability that

(d.m)
1ij l

(t) denote the indicator that takes value 1 if re-

a7

(t) takes value 1 given H(t).

Plugging (17) into (16) to compute W(i Zl) (t), we replace
Step 2 of the local transmission decisions of DWCNC in Sec.
IV-A with the following two sub-steps:
2a) For each commodity (d,m), sort the receivers of node i

according to their differential backlog weight Wi(jd’m) (t)

in non-increasing order. Let \Ifg;l’m) (t) denote the set of
receivers of node ¢ with index smaller than the index of
receiver j in the sorted list at time ¢. In this case, each
receiver in \I/( m)( t) has no smaller differential backlog
weight than recewer J-

2b) For each transmission resource allocation choice k£ €
{0,...,K}'}, compute the transmission utility weight of
each commodity (d,m):

d,m 51— d,m d,m
UAROR lzl (R =R S W) ol e)),
J
(18)
where the conditional probability w(d’m) (H(t)) can be

expressed as o
el (H(1)
H(t)}.
19)

= Pr{gij (t) > i,

According to (19), the joint conditional probability
cpfjdlm) (H(t)) for all the j € N \ {i} can be estimated
by a proper shadowing correlation model in the, possibly
complicated, physical wireless scenario where the wireless
computing network is located [22]. Computing Lpgd ) (H(t))
can be significantly simplified if the channel gains of the links
are mutually independent, which is the case when the mutual
distances between the receiving nodes exceed the shadowing
de-correlation distances [22]. In this scenario, it follows from

(19) that
Pl (H(L)

max

nax {9iv (1)} <Gia
veW; T (t)

=Pr(gi; (t) > gig] 555 (t — 1)) x
Mo ) <l
= Zz’ » (545 () = 3] 545 (t = 1)) x

-1
Hve\lfﬁ;-i'm(t)z:z/:opr (siv (£)=5i0]siv (t — 1)), (20)
where Pr(s;;(t) = 5; 1] si;(t

CSI of link (4, 7).
In addition, when using L, discrete code layers, the trans-

— 1) = 5;;~) is the statistical



mitted information can be re-grouped into L; partitions, each
of which is decoded by the RX set Q;,(S(t)). Correspond-
ingly, the step of making the forwarding decision for each
partition is the same as Step 4 of the local transmission deci-
sions of DWCNC in Sec. IV-A, except replacing €2; ,,(S(¢))
by ;(S(t)).

With discrete code layers and independent outgoing links,
the computational complexity associated with the transmission
decisions made by node ¢ at each timeslot is O(MDL;(N +
KT)), which is dominated by computing the transmission
utility weights for all commodities and resource allocation
choices.

V. PERFORMANCE ANALYSIS

In this section, we analyze the throughput-optimality and av-
erage cost performance of DWCNC by extending conventional
LDP analysis to wireless computing networks. The extension
is in two fold: i) the analysis accounts for the MCC flow
model with flow chaining and scaling instead of the traditional
multi-commodity flow model; ii) the analysis for wireless
transmission scheduling accounts for the effect of using the
broadcast approach coding scheme instead of the traditional
single-layer outage approach [15]. The resulting performance
characterization is summarized by the following theorem:

Theorem 2. For any exogenous input rate vetor A\ strictly
interior to the capacity region A, DWCNC stabilizes the
wireless computing network, while achieving an average total
resource cost arbitrarily close to the minimum average cost
B (X) with probability 1 (w.p.1); i.e.,

1 m
limsupfz - di’ )(T)

t—o0 t

%

< %[NB+V (E*(A+el)—h (A))}, wpl, (21)

w.p.1, 22)

where € is a positive constant satisfying (A+€l) € A;
—k

and h (X) denotes the average cost obtained by the optimal

solution given input rates \. (]

Proof. See Appendix B. O

In Theorem 2, the finite bound on the total queue backlog
shown in Eq. (21) demonstrates that the wireless computing
network is strongly stable with X interior to A. Note that strong
stability implies rate stability, i.e., that Agl service delivery
rates asymptotically match the corresponding exogenous ar-
rival rates (see Eq. (23) in Appendix A).

According to Eq. (21) and (22), decreasing V' results in a
lower average total network backlog bound, but no average
cost efficiency guarantee. On the other hand, the parameter V'
can be increased to push the average resource cost arbitrarily
close to the minimum cost required for network stability,
E*()\), with a linear increase in average total network backlog
bound (and hence, by Little’s Theorem, average delay bound).
Thus, Theorem 2 demonstrates a [O(1/V), O(V)] cost-delay
tradeoff.

{(1,1)=1 §12)=4

Service 1: -.-.

{(2'1)=0.25 5(2,2)=1

Service 2: -.—.—

. Wireless Link
with Rician Fading
Wireless Link
 with Rayleigh Fading

/\ AP
@ ue

Fig. 5. A wireless computing network with three access points and eight user
equipments, providing two Agl services.

TABLE 1
COMPUTING NODES’ LOCATIONS
Node Index 1 2 3 4 5 6 7
Location (X,Y) | (0,10) | (10,0) (-5,20) | (22,0) | (27,5) | (24,10) | (13,22)
Node Index 8 9 10 11 12 13
Location (X,Y) | (5, 30) | (27, 23) | (35, 21) | (30, 33) | (40, 31) | (39,9)

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical results obtained from
simulating the performance of the DWCNC algorithm for
the delivery of two Agl services over a wireless computing
network with 13 nodes during 10% timeslots. The numerical
values presented in this section for resource allocation costs,
communication flow rates, processing flow rates, and queue
backlogs are all measured in normalized units.

A. Network Structure

We consider a wireless computing network with 13 comput-
ing nodes, as illustrated in Fig. 5. Nodes 1, 6, and 7 represent
access points (APs), while all other nodes are user equipments
(UEs). We list the (X,Y") coordinates of all nodes’ locations
in Table I in normalized distance units. In terms of processing
resources, each AP has five resource allocation choices, with
associated cost and processing rate w}, =k and R; j, = 20k,
i € {1,6,7} and k € {0,1,...,4}, while each UE has
two resource allocation choices, with associated cost and rate
wly =2k and R, , = 20k, i € N'\ {1,6,7} and k € {0,1}.
Note that the processing is cheaper at the APs than at the
UEs. In terms of transmission resources, each node has two
resource allocation choices of cost wy’y = 0 and wj’; = 1.
The associated transmission rates are given in Section VI-B.

The edges in Fig. 5 represent the active wireless links,
whose channel realizations are assumed mutually independent,
i.e., we assume that the distances between nodes exceed
the shadowing de-correlation distance. Each link suffers both
small scale fading and large scale fading. The realizations
of small scale fading of each link are independently and
identically distributed (i.i.d.) across timeslots, which is approx-
imately fullfilled when the timeslot length is the coherence
time of the wireless medium. We assume that links between
APs have Rician fading (see Ref. [23]) with Rice factor
equal to 15 dB, while the rest of the links exhibit Rayleigh
fading (see Ref. [23]). The path loss coefficient of each Rician
and Rayleigh fading link is 2 and 3, respectively. Regarding
the large scale fading, we assume time-variant shadowing
components existing in the environment, e.g., moving cars,
which cause time-variant log-normal shadowing on each link.
The shadowing’s evolution over timeslots can be characterized



by a first order autoregressive model [25]: Fj;(t + 1) =
pE;;(t) + /1 — p?n;;(t), where F;;(t) is the logarithm of
the large scale fading variable for link (4,j) at time ¢, that
satisfies Gaussian distribution with zero mean and variance o p
equal to 4 dB for Rician fading links and 6 dB for Rayleigh
fading links; the n;;(t) are Gaussian random variables for link
(i,4) with zero mean and variance equal to op and are i.i.d.
across timeslots; p is a correlation coefficient for shadowing
over one timeslot interval. In this simulation, we compute
p = exp(—4d/d.), where ¢ is the maximum moving distance
in one timeslot (with length of coherence time), and d. is
the shadowing de-correlation distance. Note that § is approxi-
mately equal to one wavelength,* and therefore, by assuming
that the carrier frequency is 1 GHz, we obtain § = 0.3 meters.
By further assuming a shadowing de-correlation distance of
15 meters, we then obtain p = 0.98, which is very close to
1, implying that shadowing evolves slowly across timeslots.
Setting p = 0.98 can also be validated by the experimental
result in [26].

B. Communication Setup

To demonstrate the efficiency of adopting the broadcast
approach, we first simulate the case of adopting the traditional
outage approach coding scheme, under which each node i
only uses a single coding layer to which all the power P;"{
is allocated. The positive transmission rate, denoted by R‘;“{
is fixed under the outage approach, and the information is
reliably decoded when the instantaneous channel gain exceeds
a threshold g;?“‘. Otherwise, no information is decoded. We set
PZ“’{ to be the same among APs and UEs, respectively. The
value of P is chosen such that, if having transmitted the
signal using power P;"{ through the link with the largest path
loss, the average SNR at the receiver would be 5 dB and 0
dB for node ¢ being AP and UE, respectively. The value of
g™ is heuristically chosen as —40.80 dB and —38.37 dB for
node ¢ being AP and UE, respectively. Then, with bandwidth
By, = 10 (measured in normalized units), we generate the
maximum achievable rate as R = By logy(1 + P;19™)
equal to 23.90 and 16.02 for node : being AP and UE,
respectively.

When simulating the broadcast approach coding scheme,
we assume that each node ¢ uses three code layers, where
the RX decoding the 2nd code layer gets the same rate as
the outage approach, i.e., R?, = R‘Z’“lt while decoding the
1st and 3rd layers requires worse and better channel condition
than the 2nd layer, respectively, and therefore R},l < 7;’“1‘
and R?, > R"{. Node i allocates the total power P\ among
the code layers for transmission with fractions [2 : & : #]
and [2 : {1 : 1] for node i being AP and UE, respectively.
The channel gain thresholds corresponding to the three layers
are set to [g;1 = —42.28,g;2 = —36.26,7;3 = —34.50]
dB and [g;; = —38.48,5;,2 = —33.83,5;3 = —31.87] dB

4With uniform direction of arrival (DOA) spectrum, the de-correlation
distance for small scale fading is typically half wavelength and can be larger
for limited angular spread [23]. But the moving distance of one wavelength
is typically large enough to support the assumption of i.i.d. small scale fading
across timeslots.

for node i being AP and UE, respectively.’ By applying Eq.
(4), we generate the maximum achievable transmission rates
[RY, = O,Ri{l = 14.45,}7%1271 = 23.90,}7%?71 = 66.81] and
[RY) =0,R!, =9.74, R?| = 16.02, R?, = 40.68] for node

1 being AP and UE, respectively.

C. Service Setup

The wireless computing network offers two services (see
Fig. 5), each of which consists of two functions. To indicate
multiple services, we let (¢, m), ¢ = 1,2, m = 1,2, denote
the m-th function of service ¢; and (d, ¢, m), d € N\{1,6,7},
¢ = 1,2, m = 0,1, denote the commodity generated by
function (¢, m) for destination d.

All four functions have the same complexity factor equal
to 1, ie., r(®™ = 1, for ¢ = 1,2, m = 0,1. In terms of
flow scaling, as shown in Fig. 5, functions (1,1) and (1,2)
have scaling factors 1 and 4, respectively, i.e.,, £Y =1 and
£€(1:2) = 4; and functions (2,1) and (2,2) have scaling factors
0.25 and 1, respectively, i.e., &2 = 0.25 and £1?) = 1.
Note that function (1,2) is an expansion function, while
function (2,1) is a compression function.

We consider a scenario in which each service is requested
by 90 clients corresponding to all UE source-destination pairs.

D. Broadcast Approach v.s. Outage Approach

The throughput performance of DWCNC with the broadcast
approach and with the outage approach is shown in Fig.
6(a), where we plot the time average occupancy (total queue
backlog) as a function of the average (exogenous) input rate
per client for each service, assuming the input rate to be
the same for all clients and all services, while setting the
control parameter V' equal to 1500. Observe how the average
occupancy exhibits a sharp increase when the exogenous input
rate reaches approximately 0.82 for the outage approach and
1.00 for the broadcast approach. According to Theorem 2,
and considering € — 0, this sharp increase indicates that the
average input rate has reached the boundary of the computing
network capacity region, and hence it is indicative of the
maximum achievable throughput. It can be seen from Fig. 6(a)
that the maximum throughput using the broadcast approach
is larger than that of using the the outage approach. This
significant throughput difference is a clear indication of the
enhanced transmission ability of the broadcast approach.

In the following, we assume an average input rate of 0.7,
which is interior to the capacity region of DWCNC with both
the outage approach and the broadcast approach (see Fig. 6(a)).

Fig. 6(b) shows the tradeoff between the average cost and
the average occupancy as the control parameter V' varies
between 0 and 10%, when running DWCNC with the broadcast
approach and the outage approach. It can be seen from
Fig. 6(b) that, with either coding scheme, the average cost
decreases with the increase of the average occupancy. In

3The optimization of the power allocation among different code layers and
the associated channel gain thresholds at each transmitting node is beyond the
scope of this paper. In this simulation, power allocation and the channel gain
threshold values that satisfy R?,1 = R‘L";‘i may be suboptimal for throughput
maximization, but we treat them as given parameters.
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Fig. 6. Performance of DWCNC with the broadcast approach and the outage
approach in the large scale scenario: a) Average occupancies evolving with
varying average exogenous input rate: throughput optimality b) Average Cost
vs. Average Occupancy

general, both evolutions follow the [O(1/V), O(V')] cost-delay
tradeoff of Theorem 2. However, the corresponding trade-off
ratios are different. Note that the broadcast approach exhibits
a significantly improved cost-delay tradeoff, in the sense that
for a given target cost it can achieve a lower occupancy, and
viceversa. For example, if we fix the average cost to 27, the
outage approach requires an average occupancy of 6.96 x 10°,
while the broadcast approach can achieve the same average
cost with an average occupancy of 1.55 x 10°, leading to a
factor of 4.49x reduction in average delay. On the other hand,
fixing the average occupancy to be e.g., 6.96 x 10° requires
an average cost of 27 with the outage approach, while the
broadcast approach can reduce the average cost to 23.86 for
the same average occupancy.

E. Processing Flow Distribution

In this section, we simulate the average processing input
rate distribution for the 4 functions and 90 clients across the
computing network nodes under DWCNC with the outage
approach and with the broadcast approach, respectively shown
in Fig. 7 and Fig. 8. The average input rate for each client

and each service is again equal to 0.7 and we set the control
parameter V' to 102,

Observe from Figs. 7(a) and 8(a) that the implementation
of function (1,1) mostly concentrates at the APs (nodes
1,6,7), motivated by the fact that the APs have cheaper
processing resources than the UEs. Note, however, that part of
the processing of function (1, 1) still takes place at the UEs,
even though the APs still have available processing capacity.
This results from the fact that, for certain s — d pairs, there
exist short paths connecting node s and d not passing through
any AP, such that commodity (d,1,0) steadily gets routed
along these paths and gets processed at the corresponding UEs,
instead of getting routed along longer paths that pass through
APs. Comparing Fig. 7(a) and Fig. 8(a), it can be seen that
the implementation of function (1,1) concentrates even more
at the APs when using the broadcast approach. This is due to
the enhanced transmission ability of the broadcast approach,
which lowers the cost of taking longer paths passing through
APs.

Figs. 7(b) and 8(b) show the average processing input rate
distribution of function (1, 2), which is an expansion function.
As shown in Fig. 7(b), the processing of commodity (d, 1, 1)
concentrates at its destination node d when using the outage
approach, which results from DWCNC trying to minimize the
transmission cost impact of the expanded-size commodities
generated by function (1,2). In contrast, as shown in Fig.
8(b), the processing of commodity (d, 1, 1) with the broadcast
approach for certain destinations, e.g., d = 2,9,10,11, is
partly implemented at the APs, which is again motivated by
the enhanced transmission ability of the broadcast approach to
route commodities for cheaper processing at the APs.

For Service 2, observe that the average processing input
rate distribution of function (2, 1) is quite different depending
on the coding scheme used, as illustrated in Figs. 7(c) and
8(c). With the outage approach, Fig. 7(c) shows that function
(2,1), a compression function, is implemented at all the UEs
except the destination node d, and at the APs. This is because,
for each client s — d, implementing function (2,1) at the
source node s reduces the transmission cost of service 2 by
compressing the source commodity (d,2,0) before entering
the network. In contrast, as shown in Fig. 8(c), the imple-
mentation of function (2,1) using the broadcast approach
mostly concentrates at the APs. This is once more due to the
increased transmission efficiency of the broadcast approach,
which allows to push the processing of commodity (d, 2, 0) to
the cheaper APs with a smaller penalty in the transmission cost
required to route the uncompressed commodity. On the other
hand, note that a portion of commodity (d,2,0) is processed
at nodes 10, 11, 12, 13 due to the fact that the these UEs either
have long distance wireless links to APs (node 10 and 11) or
have no active wireless links to APs (node 12 and 13), such
that local processing is more effficient.

The processing distribution of function (2,2), shown in
Figs. 7(d) and 8(d), display a similar behavior as that of func-
tion (1,1). Note how the processing distribution concentrates
more on the APs when adopting the broadcast approach, illus-
trating, once more, how its enhanced transmission efficiency
allows a better utilization of the cheaper processing nodes.
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VII. CONCLUSION

We considered the problem of optimal distribution of aug-
mented information services over wireless computing net-
works. We characterized the capacity region of a wireless
computing network and designed a dynamic wireless com-
puting network control (DWCNC) algorithm that drives local
transmissions-plus-processing flow scheduling and resource
allocation decisions without knowledge of service demands
or precise channel state information. DWCNC is shown to
achieve arbitrarily close to minimum average network cost
while subject to network delay increase with general trade
off order [O(1/V),O(V)]. Our solution captures the unique
chaining and flow scaling aspects of Agl services, while
exploiting the use of the broadcast approach coding scheme for
enhanced wireless transmission efficiency. Simulation results
demonstrate the efficiency of DWCNC to route and process
source information flows through the appropriate sequence of
service functions hosted at wireless computing nodes, and the
significant throughput and cost-delay tradeoff improvements
obtained when using the broadcast approach coding scheme
as opposed to the conventional outage approach.

APPENDIX A
PROOF OF THEOREM 1:NECESSITY

A. Proof of Necessity

We prove that (10a)-(10h) are necessary for the stability
of the wireless computing network, and that the minimum
average cost can be achieved according to (11) and (12).

Recall that our policy space includes policies that use
multi-copy routing, which allow multiple copies of the same
information unit to travel through the network. We say that
two information units are equivalent if the successful delivery
of one of them to its destination does not require the delivery
of the other to satisfy the service demand. Note that equivalent
information units may be exact copies of each other, but may

also be distinct units that have evolved via service processing
from the same information unit.

Let us assume that when an information unit of final
commodity (d, M) gets delivered to destination d, all other
equivalent information units are immediately discarded from
the network — an ideal assumption for traffic reduction of
algorithms with multi-copy routing. We define Z(%™)(t) as
the set of information units of commodity (d,m) that, after
going through the sequence of service functions {m + 1, m +

, M}, are delivered to destination d within the first ¢
timeslots. Suppose there exists an algorithm that stabilizes
the wireless computing network, possibly allowing multi-copy
routing. Under this algorithm, define

o I (d,m) (t) the number of information units within
Z(dm )(t) that exogenously enter node i
o I!%™(¢) and I'“"™ (t): the number of information units

i,pr pr,i
within Z(4)(¢) that enter/exit the processing unit of
node 7;

. Ii(f’m) (t): the number of times the information units
within Z(%™) (t) flow over link (4, 7).

Since the algorithm stabilizes the network, we have, with
probability 1,
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(23)

Moreover, the total number of arrivals (both exogenous and
endogenous) to node 4 of information units within Z(4)(t)
must be equal to the number of departures from node i of

information units within Z(%™)(t). Therefore, we have, for
i1£dorm< M,
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and, for m < M and for all 7 and d,

I(d m+1)( £ =

LM (1),
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(25)
Define the following variables for transmission:

e T(s,t): the number of timeslots within the first ¢ timeslots
in which the network state is s;

o ajf;.(8,7): the number of timeslots in the first ¢ timeslots

in which k transmission resource units are allocated at

node ¢, while the previous network state is §;

Bi(ffr’m) (8, k,t): the accumulated time (in possibly frac-

tional amount of timeslots) during the first ¢ timeslots

used by node ¢ to transmit information units within

T(4™)(t), while k resource units are allocated for trans-

mission, and the previous network state is s;

. pl(dsm) (8,k,t): the accumulated time during the first ¢
timeslots used by node ¢ to transmit information units
within Z(4)(¢) when the network state is s, while the
previous network state is S, and k resource units are
allocated for transmission;

. fyl(im (8,k,s,t): the number of times during the first
t timeslots that an information unit within Z(%™)(¢)
is transmitted by node 7 with %k transmission resource
units allocated, and fall into the n-th partition, while the
network state is s and the previous network state is S;

. ﬁl(;i m)(s k,s,n,t): the number of times during the first ¢
timeslots that an information unit within Z(%™) (t) trans-
mitted by node ¢ with k£ transmission resource units, is
obtained by node j while belonging to the n-th partition,
when the network state is s, and the previous network

state is S.

The above definitions and the transmission constraints yield
the following relations:
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where we define 0/0 = 1 for any term on the denominator
happen to be zero. For each link (i, j), each commodity (d,m),
and all ¢, we then have
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The network state process S(t) yields, for all s € S,
lim ) = Ts, with prob. 1, 30)

t—o0

and due to fact that y;", (7) is independent of S(7) given S(7—
1) = §, we also have, for all i,d, m,

k,t
m ——————— = P, (31
) (8, k,t
where Pss 2 Pr(S(t)=s|S(t—1)=5). In addition, the average
rate of the n-th partition satisfies, for all i, k, d, m, s, s, t,
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Define the following variables for processing:

o off '(t): the number of timeslots during the first ¢ times-
lots in which node ¢ allocates k processing resource units;

. ,61(‘;7” (k,t): the accumulated time used by node i to pro-
cess information units within Z(%™) (), while k resource
units are allocated for processing;

. fyi(:f;rm) (k,t): the number of information units within
Z(4™)(t) that are processed by node i with k processing
resource units allocated during the first ¢ timeslots.

Based on the above definitions and the processing constraints,
we have the following relations:

K7 azrk .
>0 >0 =1, Vit, (33)
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For each node i, we then have, for all i, (d, m) and ¢,
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Because the constraints in (26)-(28), (32), and (33)-(35)
define bounded ratio sequences with finite dimensions, there
exists an infinitely long subsequence of timeslots {¢,} over
which the time average cost achieves its lim inf value h, while
the ratio terms converge, which are shown in (37) (see the
bottom of the next page).
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where inequality (a) holds true due to the converging terms in
(30) and (37) for transmission and the fact that F’ i(;i’m) (k,s) <
Ri g, ,.k(8)—Rig, ., k(s): equality (b) holds true due to the

Jim 15 (1) / tu. Then, it follows
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fact that 75 = de s s Pss and the following definitions:
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In addition, define fz(f)rm) lim Iz((;i)rm)( 2) /
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. With the

convergmg terms for processmg and the fact that F(d ™) (k) <
Rix/rmFY, for m < M, it follows from (36) that

K
(d,m) (d;m) R
fi,pr < Z ﬁz tr ( ) T(m+1) .

Moreover, the flow efficiency and non-negativity constraints

follow: fi(,(;}M 0, fp(rdlo) f(d M=o, fz(lj)rm >0,

fi(jd’m) > 0. Furthermore, d1v1d1ng by t, on both sides of (24)
and (25), and letting t,, — oo, we have, for ¢ £ d or m < M,

with the result of (23),
d,m) d,m d,m) d m
DL RN = 3D R

and, for m < M and all i and d, £ = ¢tmt f{m),
Finally, the time average cost satisfies
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where, for (a), we used the fact that )
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In summary, given {)\ ’m)} € A, this proves that there
exists a set of flow variables and probability values that satisfy
the constraints in Theorem 1. The minimum average cost n
follows from taking the minimum of A over all the variable
sets that stabilize the network.

ses

B. Proof of Sufficiency
Given exogenous input rate matrix {)\ m 4 €}, € > 0,

probability values of, (s), BE™ (s, k), 771(;1 ™ (s, k,n), oy,

i,tr
d, d d,m
ﬂ(,prm) f( ,m) fz( o )’

fég Zm) satisfying (10)-(12), we construct a stationary random-

ized policy using single-copy routing such that:

(k), and multi-commodity flow variables

E{uem @} = rlam, B{uitm e} = f4m, 3sb)

where ,u(d ™) (1), u%’rm)(t), and uéﬁ{f’”(t) respectively denote
the flow rates assigned by the stationary randomized policy
for transmission and processing. Plugging {)\Ed’m) + €} and
(38) into (10a), after algebraic manipulations, we have

{Z M(dm ) E(f)rm)(t)_
5 70~ 0 2 5 v

By applying the standard LDP analysis [14], {)\Z(-d’m)} is
proven to be interior to A.

APPENDIX B
PROOF OF THEOREM 2

Following from (14), we first prove the following lemma:

Lemma B.1. Among the algorithms using single-copy rout-
ing, the DWCNC algorithm, in each timeslot t, max-
imizes E{Z (t)-VhY(t)|H(t)} subject to (5)-(6) and
E{Z!" (t) - VR (t)| H(t)} subject to (1)-(2). O

Proof. See Appendix C. O

Lemma B.1 implies that the right hand side of (14) is
minimized by DWCNC, and is therefore no larger than the
corresponding expression under the optimal stationary ran-
domized policy (characterized in Theorem 1) that supports
(A + €1) € A and achieves average cost i (A + €l):

A(H(t)+VE{h(t)| H(t)} < NB+NQ(t)+
> E{Z () VR () + Z7(6) - VR (1)}

< NB+ VR (A+el) —EZZ Q™ (t). (40)

dm)

Finally, we can use the theoretical result in [24] for the
proof of network stability and average cost convergence with
probability 1. Note that the following bounding conditions are
satisfied in the network system:
1) The second moment of E{(h(t))?} is upper bounded
by [>; (wf K T wfprr)]Q and therefore satisfies
> om0 E{(h(1))?}/ 7 < 0.

2) We have E{h(t)| H(t)} lower bounded for all #(¢) and
t: E{h(t)| H(t)} > 0.

3) The conditional fourth moment of backlog change is
upper bounded for all ¢, ¢ and (d, m):

E{(Qﬁd’m) (t+1)— Q™™ (t))4‘7-l(t)} <

4
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With the above three conditions satisfied, based on the deriva-
tions in [24], Eq. (40) under DWCNC leads to the network
stability (21) and average cost (22) bound, with probability 1.

APPENDIX C
PROOF OF LEMMA B.1

Regarding the processing decisions, since the
computing  channel is always known, maximizing
E{Z" (t) — VA (t)| H(¢)} is equivalent to maximizing

ZP () - VRN(t ) And the maximization of ZV (t) — VA (t)
subject to (1)-(2) can be achieved by the choice of commodity
(d, m), resource allocation k, and flow rate u(‘im)( ) described
by the local processing decisions of DWCNC in Sec. IV-A
according to a straightforward max-weight matching.

For the transmission decisions, by plugging (5) in, we can
express Z\' (t) (see (14)) as follows:

—1N-1

Z0=Y Y3

(dm)n 1u=n
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H Q"™ (1) - Qi (1)).

(41)

Let y be the fraction of the transmission time allocated
to the transmission of commodity (d,m) in timeslot ¢, and let
nl(]dﬁbn ) (t) be the fraction of the transmitted commodity (d,m)
in the n-th partition that is retained by node j, with n <
q; S(t)( /). Then, assuming single-copy routing, Eq. (6) yields

)
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dm) .
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SO (@) <1 Vit (dm).

Plugging (42) into (41) and taking the expectation conditioned
on H(t) and {y;";(¢) = 1}, it follows that

d,m
nl(‘h uLa)n(t) x

(44)

IE{ZFr (t) |7—Lt ),y (t) =1}
DY ZE{xfir’”) D) [Rige e (S() = Rigy ., 1(S ()]
(dym) n=1

W™ ()| H (1) (1) = 1

d,
x Z 77§Qz7:7)n
N-1
{ (dm
z tr
(d;m) n=1

x  max {ng ) (t)}‘ H(t), Y (t) = 1}

JEQin (8(1))

{Xz‘frm) t)‘ H (L), Y, (1) = 1} x

E max {Wi(fi’m) (t)}x
= lietuasent Y

[Rigi .1 (S ()= Rig, ,_,.k(S (1))] | H (¢

N—-1
ZE{[M, S (1) -

—
IN=

(1) [Rig .k (S(£)) = Rig, ., 1 (S(1))]

—
3}

‘)Z;n

N-1

(d)
< max Rig, .,k (S (t))] X

(d,m)

max {ngd””()}‘ﬂ(t) Y (t) = 1}}

jeQi,n(s(t))
(e (d;m)
= Dax {Wi,k,u (t)}-

In (45), inequality (a) follows from the definition of
Wi(jd@’m)(t); inequality (b) follows from (44); equality (c)
holds because, given H(t) and {y;rk(t) = 1}, the values
of Rig, ..k (S(t)) and max;cq, . ( {W-(d’m) (t)} are deter-
mined by S(¢) and therefore are 1ndependent from X(d ™ (¢);
inequality (d) follows from (43); equality (e) follows from the
definition of W™ (¢) in (15).

i, k,tr
Finally, takmg expectation over y;';.(t) on (45), we obtain

(45)

E{Z (t)— VA ()| H(t)}
K\l’
< Z [max () { WS (0} = Vel | Pr{yf() = 1}
(2) max {W.(d’m) (t) — Vwy } (46)
= k(dom) i,k ,tr i,k [

where ( f) follows due to the fact ZkK:lO Pr {y;rk(t) = 1} = 1.

In (45) and (46), the upper bounds (a) and (b) can be
achieved by step 4 of DWCNC local transmission decisions;
the upper bound (d), (e), and (f) can be achieved by step 2
and 3 of DWCNC local transmission decisions. This concludes
the proof of Lemma B.1.
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