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Abstract—In this paper, we introduce an approach to analyze
the interaction between antennas and the propagation channel. We
study both the antennas and the propagation channel by means of
the spherical vector wave mode expansion of the electromagnetic
field. Then we use the expansion coefficients to study some prop-
erties of general antennas in those fields by means of the antenna
scattering matrix. The focus is on the spatio-polar characterization
of antennas, channels and their interactions. We provide closed
form expressions for the covariance of the field multimodes as func-
tion of the power angle spectrum (PAS) and the channel cross-po-
larization ratio (XPR). A new interpretation of the mean effective
gains (MEG) of antennas is also provided. The maximum MEG is
obtained by conjugate mode matching between the antennas and
the channel; we also prove the (intuitive) results that the optimum
decorrelation of the antenna signals is obtained by the excitation
of orthogonal spherical vector modes.

Index Terms—Channel modeling, cross-polarization ratio, mean
effective gain, scattering matrix, spherical vector wave expansion.

I. INTRODUCTION

S PACE has been declared by many as the “final frontier”
in wireless communications, while others recognize its ex-

ploitation as just “important and fruitful.” In any case, its im-
portance is without a doubt indisputable. Then, a natural ques-
tion is: How can we “squeeze” the last bit of information from
the “Space”? In order to answer this question and many others,
we need to understand the fundamental issues of the problem
posed. In particular the physical properties of both antennas
and propagation channels. More precisely, here, we are inter-
ested in the interplay between antennas and the radio propaga-
tion channel. Our final goal is to understand the actual phys-
ical implications of the spatial and polarization selectivity of the
propagation channel on the communication link capacity.
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In most practical situations the radio propagation channel
is selective in both space and polarization,1 i.e., within some
volume it is more likely to receive signals from some directions
rather than others as well as with some polarization rather than
others. This has, as we are going to see, a great impact on the
modes excited in the channel and therefore also on the antennas
we should use in those channels. Hence, it is important to study
the properties of the field incident at the antenna in order to un-
derstand the interaction between the antenna field the field of
the waves impinging at it.

There have been other papers aiming to describe the inter-
action between the antennas and the channel in terms of mul-
timode expansions [2]–[9]. However, these approaches are re-
stricted to the scalar case, where the polarization characteristics
of the channel are omitted. This of course, does not suffice for
the full understanding of the physics involved in the interaction
between the wireless communication channel and the antennas.
The limitations of such an approach are detrimental to both the
theoretical treatment of electromagnetic fields, since they are in-
herently vector fields, and the practical applications, since polar-
ization diversity is gaining more and more importance for wire-
less communications and requires proper modeling [10].

A natural way to express the polarization, angle, and spatial
diversity inherent to MIMO systems [11], [12], is by describing
the properties of both antennas and channels by means of the
spherical vector wave expansion of the electromagnetic field,
which is a particular solution to Maxwell equations [13], [14].
This expansion gives a condensed interpretation of the radia-
tion properties of an antenna. Although this mode expansion
is infinite, in practice, it is sufficient to consider a finite set of
modes due to the high Q-factors (strong reactive near field),
and hence high losses and low bandwidth, associated with high
order modes [15]. Moreover, the spherical vector waves expan-
sion and the scattering matrix representation of an antenna are
the cornerstone of the theory and practice of near-field antenna
measurements [14]. This approach has also recently been suc-
cessfully applied to the problem of the interaction of antennas
with the radio channel, where as a first assumption an isotropic
unpolarized field2 was assumed for the incoming field [16]. It

1Selectivity in time is of course also of great relevance, but we are not going
to deal with it here, see [1] for further reference on channel properties.

2The coherence matrix � of the field with orthogonal field components �
and � has elements � � �� � �. We say then that the field is polarized
when ������� � and that the field is unpolarized when � � � � �.
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was shown there that for the isotropic field3 the excited spher-
ical modes are all of equal magnitude.

In this paper we model the field incident at the antenna by
a mixed Gaussian vector field consisting of an unpolarized
stochastic component with non-isotropic power angular spectra
(PAS) and a deterministic (polarized) component. The power
imbalance of orthogonal polarizations is modelled by the
channel cross-polarization ratio (XPR). The Gaussianity of
the field is defined with respect to the complex vector field
amplitudes of the incident field. We develop a model for the
correlation between the field components under these assump-
tions. We then use this model to derive the statistical properties
of the expansion coefficients in spherical vector modes for
general Gaussian fields and the properties of optimal antennas
in those fields.

Our paper aims at developing some insights into the physics
involved in the wireless communication, and, in the process,
provide criteria and methods for optimally matching antennas
to a given channel. The key contributions of our paper on the
latter aspect can be summarized as follows. We show that:

• maximum mean effective gain (MEG) and the maximum
received (transmitted) power of an antenna is achieved by
conjugate mode matching;

• independent signals are achieved by eigenmode reception
(transmission) over the strongest multimodes.

Other relevant contributions are:
• we show that in a Gaussian electromagnetic field (the prop-

agation channel) each multimode coefficient in the spher-
ical vector wave expansion is a Gaussian variate and as
a consequence we prove that the envelope of each multi-
mode coefficient in the spherical vector wave expansion is
a Ricean variate;

• we derive closed-form expressions for the mode correla-
tion matrix for arbitrary PAS of incoming waves and for
the normalized power of single modes in terms of the PAS
of incoming waves and the channel XPR.

The remainder of the paper is organized as follows. In
Section II, we give a brief description of the statistical properties
of the model used for the incident field. In Section III, we express
the same in terms of the expansion coefficients, where we also
provide closed form expressions for the elements of the spherical
vector wave mode correlation matrix. Section IV describes the
scattering matrix representation of the joint antenna-channel
properties, and we also derive some fundamental properties of
antennas such as MEG. In Section V, we provide simulation
results where we study the interaction between a Gaussian
channel with Laplacian PAS and patch and tripole antennas.
The conclusions are summarized in Section VI.

II. INCIDENT FIELD

The wireless communication channel is often modeled as the
superposition of random waves. Under certain conditions the
envelope of the resulting signal is distributed according to the
Rayleigh probability density function (pdf) while the phases are
uniformly distributed. This results in an unpolarized total field.

3In this paper, an isotropic field is understood as a field where the AoAs (angle
of arrivals) are uniformly distributed over the sphere of unit radius.

More specifically, Rayleigh fading may be seen as an ensemble
of Gaussian random waves, made up from superpositions of
plane waves with random phases at each position in space. The
directions of arrivals (DoAs) are in general non-isotropically
distributed on the sphere of unit radius. Thus, the electric field

at position , can be expressed through the plane wave spec-
trum (PWS) representation

(1)

where the integral is taken over the sphere of unit radius,
is the elementary solid angle, denotes the random com-
plex PWS of the field at the observation point in space

is the wave number, is the unit wave vector in the
direction of the plane wave propagation, is the wave length,
and the time convention is assumed.

The more general Ricean fading model assumes a determin-
istic, and therefore polarized, component in addition to the
random component. In general, its amplitude is larger than the
amplitude of each the single unpolarized waves. In this case,
the PWS of the total field is given by the vector

(2)

where is the deterministic component while
is the zero mean random field component with
and denotes the ensemble average (see, e.g., [17, p. 285]).
We model as a stochastic process that assigns to every ob-
servation of the family of functions . Hence, is
the actual realization (observation) of the random variable .
Then, representing through orthogonal PWS field compo-
nents and , the average of the polarization com-
ponents are

(3)

for the component, where is one of the two
orthogonal components of the polarized field component that
arrives from direction ; a similar expression applies to the

component. The symbol de-
notes the Dirac-delta in spherical coordinates defined on the
sphere of unit radius.

We postulate the following correlation model for the PWS,
which is an extension of the model in [18]–[20].

1) The phases of the co-polarized PWS components are
uncorrelated for different DoAs, and . This is the
random PWS field for which the two orthogonal com-
ponents, and or and

are uncorrelated.
2) The phases of the cross-polarized PWS are uncorrelated for

different DoAs, and , with the exception of one fixed
direction . This is the deterministic PWS field compo-
nent, for which the two orthogonal components
and or and are correlated.
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Therefore, if and , are the complex PWS com-
ponents of the random electric field in two orthogonal polariza-
tions, then

(4)

where , denotes the Kronecker-delta function and the as-
terisk denotes complex conjugate.

The above stated conditions define both the auto- and cross-
correlation properties of the random PWS field , i.e., the
second order properties of the modelled stochastic field, at dif-
ferent DoAs and . It is worthwhile to note that the phys-
ical meaning of the cross-correlation of the incoming field eval-
uated at different DoAs defined in (4), relies on the assump-
tion that the vector field components themselves are described
by Gaussian stochastic processes in the direction of arrivals. It
should be observed that (4) is independent from the choice of
coordinate system. However, in practice, it is often convenient
to define the directional properties of both the antenna and the
propagation channel in some specific coordinate system.

Hence, the PAS of the unpolarized field component along
or , which are the two orthogonal orientations in the spher-
ical coordinate system are defined according to the definition
given in [19]. The PAS depends upon the directions of arrival ,
where is used interchangeably to denote the set of spherical
coordinates and the solid angle and describe the DoA de-
fined by the vector expressed in the same system. Commonly,
the PASs of field components along and are denoted
and , respectively. Then, the PAS of the unpolarized field
component is given by

(5)

where is the wave number of the incoming plane wave,
is the free-space impedance4, is the power that

would be received by an isotropic antenna polarized along
; a similar expression applies for the component along

. The pdfs and satisfy the
normalization , where stands for either or

.
Similarly, the PAS of the polarized field component along

and in spherical coordinates is

(6)

where is the average power that would be received by an
isotropic antenna polarized along at the incidence direction,

, of the polarized, deterministic component where
is the Dirac-delta; a similar expression applies

for the component along .
Ricean channels are characterized by the Ricean K-factor,

which is defined as the ratio of the power in the deterministic

4We also use � to denote radiation efficiency.

component to the power of the stochastic component of the re-
ceived signals. Here, we follow the same formalism and define
the effective Ricean K-factor as the ratio of the power in the po-
larized component to the power in the unpolarized component

(7)

where
and are

the K-factors of field components in the direction of or ,
respectively. is the XPR of the
unpolarized field component. The effective Ricean factor is a
measure of the power in the polarized component relative to the
power of the unpolarized component.

The “effective” cross-polarization ratio of the channel XPR
of the total field is defined as the ratio between the power in the

polarization to the power in the polarization

(8)

The fundamental statistical properties of the Gaussian vector
field can then be summarized by the following quantities:

• PAS of the field at two orthogonal polarizations and
;

• XPR of the channel ;
• Ricean K-factor.
The PAS of the unpolarized field plays a key role in propaga-

tion modeling since it describes, together with the power of the
polarized component, the polarization- and spatial selectivity of
the channel. Models of the PAS are usually derived by exten-
sive measurements and reflect an average behavior of the prop-
agation channel. They are usually used in both link and system
level simulations of communications systems exploiting smart
antennas or in general MIMO antenna systems [10]. However,
they also find their use in computations of the mean effective
gain of antennas (MEG), which is a measure of the performance
of antennas in different propagation environments [21]. Below
it is shown to be a fundamental measure of the antenna-channel
interaction.

III. SPHERICAL VECTOR WAVE EXPANSION OF THE INCIDENT

FIELD

The field impinging on an antenna can be modelled by the
spherical vector wave expansion formalism. Hence, the total
incident field is expanded in regular spherical vector waves

[13], [14]

(9)

for , where is the radius of a sphere circumscribing the
antenna and are the expansion coefficients corresponding
to multipoles or modes described by indices . When-
ever necessary, the multi-index is identified with the ordered
number . Hence, the expansion coeffi-
cients can be represented by the vector . The multipoles are
classified as either or . The azimuthal
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and radial dependencies are given by the and index, respec-
tively. The factor is used to power normalize the expan-
sion coefficients. The regular spherical vector waves
are briefly described in Appendix A.

The plane wave expansion coefficients in regular spherical
vector waves can then be expressed as the sum of the polarized
and unpolarized components

(10)

where the expansion coefficients for the polarized field compo-
nent are given by

(11)

where we have used (3). For the unpolarized field component
expansion coefficients are

(12)

where the functions are the spherical vector harmonics,
see Appendix A.

Clearly the expansion coefficients are obtained as a linear
combination of individual plane waves.

A. Statistical Properties of Mode Expansion Coefficients

Now, since the incident field is assumed to be a random field,
we are interested in characterizing the statistics of the multi-
mode expansion coefficients, , which are summarized in the
following propositions.

Proposition 1: In a multipath propagation environment char-
acterized by a mixed field with both a random Gaussian, unpo-
larized, field component and one deterministic, polarized, field
component, the correlation matrix of expansion coefficients of
the total received field in regular spherical vector waves is given
by the sum of the mode correlation matrices corresponding to
the polarized and the unpolarized components, respectively

(13)

where and are the vectors with elements and
, respectively. The elements of the correlation matrices

are given by

(14)

where denotes the mode cross-correlation of the polarized
deterministic component given by

(15)

where denotes real part. In (15) we have used that
and that is a phase angle that depends

on the polarization, e.g., , for a linearly polarized wave
and for circularly polarized waves. de-
notes the cross-mode correlation corresponding to the unpolar-
ized component given by

(16)

where we have used the definition of the PAS of the incoming
waves at two perpendicular polarizations (6). The derivation is
given in Appendix B.

Lemma 1: In a multipath propagation environment character-
ized by a mixed field with both random Gaussian, unpolarized,
field components and one deterministic, polarized, field com-
ponent, the expansion coefficients of the total received field in
regular spherical vector waves, , are Gaussian variates with
mean

(17)

and variance

(18)

where the mode powers of the polarized component are given
by

(19)

and the mode powers of the unpolarized component are given
by

(20)

Hence, the second moments, i.e., the mode powers, are given by

(21)

as shown in Appendix C.
Remark 1: In a multipath propagation environment character-

ized by a mixed field with both random Gaussian, unpolarized,
field components and one deterministic, polarized, field com-
ponent, the envelope of the expansion coefficients of the total
received field in regular spherical vector waves, , are Ricean
variates with K-factor

(22)

This result follows directly from Lemma 1.
It is now clear that the power of the mode with index cor-

responding to the polarized component depends upon both the
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AoA and the power of incoming waves from that direction at
each polarization (19). Similarly, the power of the mode with
index corresponding to the unpolarized component depends
upon both the distribution of AoA and the average power at each
polarization (20). The physical meaning is straightforward, the
mode power is the power that would be received on average by
an ideal antenna able to receive only the mode with index .

In the special case when only the unpolarized field component
is present, it follows from (20) that the mode cross-correlation
is given by . Hence, the mode power is

. Further, for the isotropic model we arrive at,
, where we have used the orthogonality properties of

the spherical harmonics and used the following normalization
for the power densities, .

For the analysis, in this paper, of the antenna-channel inter-
action, the working assumption is that the incident field is an
finite sum of plane waves. It is, however, well known that a
plane has infinite power, but, for all practical applications the
total received power as well as the number of useful multimodes
is finite. Indeed, all practical antennas can be defined by a fi-
nite set of spherical vector wave expansion coefficients [14],
[22]. Moreover, for electrically small antennas according to the
Chu-Fano theory, only the lower order expansion coefficients
are of interest, since the influence of higher order modes is neg-
ligible [15], [23].

Now, from the orthogonality property of the spherical vector
harmonics we obtain that the total available power is given by

(23)

where . The factor 4 is introduced to take
into account that is obtained for regular waves, while we are
only interested in the power of the incoming waves.

We can further normalize the total field power to the unity5,
, and then we can rewrite the relative mode power in the

following way

(24)

Hence, after some algebraic manipulations the mode power can
be expressed as

(25)

Equation (25) corresponds to the mean effective gain (MEG)
[24], with the difference that instead of the partial gains we have
the absolute values of the components of the spherical vector
harmonics, and , respectively. The physical
meaning of the mode power in a Gaussian field becomes ap-
parent. Indeed, the mode power corresponds to the mode “link

5Here it is important to observe the normalization of the total multipole
power, � � ����� ��������, which directly
follows from the addition theorem of spherical vector waves in Appendix A.

gain” between the multipoles and the source to the incoming
field. Hence, by exciting the appropriate modes the quality of
the communication link is maximized.

IV. SCATTERING MATRIX OF AN ANTENNA AND OPTIMAL

ANTENNA COMMUNICATION PERFORMANCE IN FADING

CHANNELS

In the previous section we showed that the expansion coeffi-
cients into spherical vector waves are also Gaussian variates as
a result of the model used for the incident field. In this section
we present the link between the incident field and the antenna
with the purpose of investigating its properties in random fields.

All of the properties of an -port antenna as transmitting,
receiving or scattering device are contained in the scattering
matrix [14]. The scattering matrix of an antenna relates the in-
coming signals, and waves, , with the outgoing signals,
and waves . The scattering matrix is given by

(26)

where is the matrix containing the complex antenna reflection
coefficients, is the matrix containing the antenna receiving
coefficients, is the matrix containing the antenna transmitting
coefficients and is the matrix containing the antenna scattering
coefficients.

The total electric field associated with the antenna is here ex-
panded in incoming, , and outgoing, , spher-
ical vector waves or modes [14]

(27)

where (incoming waves ) and (outgoing waves )
are the corresponding multipole coefficients. A brief description
of the spherical vector waves is given in Appendix A.

In order to analyze the interaction of the antenna with a
random propagation channel we first determine the transmis-
sion matrix as a projection of the far-field of the antenna on
the spherical vector harmonics, , in transmitting regime.
Hence, the far-field of port is given by

(28)

where is defined in Appendix A, is the unitary spa-
tial coordinate and is the signal incident on port with cor-
responding power normalization, . Further, applying
the orthogonality properties of spherical vector harmonics, we
obtain the transmission coefficients of the antenna

(29)

Evoking the Lorentz reciprocity theorem we arrive at the matrix
containing the receiving coefficients [14]

(30)
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Since we are interested in the receiving regime we set for
the incoming signals. Then, from the scattering matrix we can
now infer the relationship between the outgoing signals and the
incoming waves for a lossless -port antenna

(31)

where , is a vector containing the expansion coefficients of
incoming waves.

It is worthwhile to note that, even if the treatment focuses on
the receiver regime of the antenna, the exposed theory applies
also to the transmission regime due to the reciprocity condi-
tions (30). Furthermore, in the previous sections we studied the
spherical vector wave expansion of Gaussian fields, more ex-
actly we studied the model of the superposition of plane waves
for the incident field at a spherical volume. The expansion co-
efficients , are related to the expansion coefficients , of reg-
ular waves, with multipole index , as , and therefore

. This result follows from the prop-
erties of the spherical vector wave functions and the fact that
the outgoing an incoming waves carry the same power in free
space (empty minimal sphere), i.e., , where the
scattering matrix .

Expressions (28)–(31) can readily be used for the analysis
of the interaction between an -port antenna system with the
far-field radiation patterns, and a random propagation
channel denoted by . These relationships enable the evaluation
of communication performance of multiple antennas in a given
propagation channel. Also, they constitute a tool for evaluating
communication performance bounds of generic antennas in the
context of Gaussian channels as we will show in Section IV.A.

The scattering matrix formalism is valid for any signals
and waves , including waves that can be modelled by random
variables, while the antenna matrices and are deter-
ministic in general. In the following we show some results appli-
cable for general propagation channels and antennas modelled
by the scattering matrix.

Next we present some results for optimal antennas in a gen-
eral channel but also in multimode Gaussian channels described
in Section III. We are looking at the link communication perfor-
mance of an antenna in Gaussian field generated by a transmit-
ting device, which has propagated through the channel. We as-
sume that the receiving and transmitting antennas are separated
at a sufficient distance so that no mutual coupling occurs. We
analyze both the total link power and the cross-correlation be-
tween signal received at different antenna ports.

A. Maximum Received Power

In wireless communications the link quality is of great im-
portance for the successful transmission of information. Link
quality is directly connected to link gain, which in turn, among
other parameters, depends on path gain, antenna characteristics
and transmitted power. The following proposition summarizes
the general conditions under which we can increase link com-
munication power in terms of transmission and reception coef-
ficients of field multimodes.

Proposition 2: The optimal “instantaneous” power of the out-
going signals, , of an -port antenna in a random field, ,
is

(32)

The optimal value is achieved for matched transmission (recep-
tion) coefficients

(33)

where is the radiation efficiency of port and is an arbi-
trary phase. The derivation is given in Appendix D.

The physical interpretation is straightforward: the received
power (or similarly the transmitted power due to reciprocity)
is maximized if the incoming (outgoing) waves are conjugate
matched by the receiver (transmitter) coefficients. This of course
requires the knowledge of each realization of the incoming field.
It is worthwhile to notice that in practice, when a specific geom-
etry, physically realizable materials and matching networks are
considered, the number of multimodes that could possibly be
excited is not arbitrary. As we mentioned earlier, higher modes
will suffer from losses that depend on the ratio between the ra-
dius of the minimum sphere enclosing the antenna to the radia-
tion wavelength. Hence, for electrically small antennas only low
order multipoles are of interest [15], [25].

Proposition 3: The average of the optimal power of the out-
going signals, , of an -port antenna in a random field,
is

(34)

This result follows directly from Proposition 2.
Equation (34) gives the average of the maximized received

power, which is in general different from the maximum average
power, i.e., .

In many practical situations we would like to assess the com-
munication performance of antennas, or in general any radiating
device, in actual multipath propagation channels, e.g., testing
the communication performance of mobile handsets in wireless
networks. A parameter that actually takes into account both the
antenna and the channel is the MEG [21]. Here, we present a
definition based on the spherical vector wave expansion.

Definition 1: Let an antenna be described by the scattering
matrix (26), then we define the MEG of the antenna as the ratio
of the average power of the outgoing signals, , to the
average power of the incoming waves,

(35)

Proposition 4: The MEG of an -port antenna in a random
field, , is upper bounded by

(36)
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where equality is achieved by conjugate mode matching. The
result follows directly from Proposition 3.

This result corroborates a similar result shown in [24].

B. Minimum Correlation

In the previous section we studied the conditions that provide
maximum power for the output waves. In this section we in-
stead focus on the cross-correlation characteristics of the output
waves.

Consider the following correlation definition

(37)

where is the correlation matrix of outgoing
waves of dimensions and is the mode
correlation with dimensions .

It is known that in order to maximize the diversity gain of
a system with multiples antennas, the received signals, , at
the different antenna ports, should be uncorrelated [10]. Hence,

must be diagonal. Proposition 5 summarizes the general
conditions under which we can achieve this diagonalization.

Proposition 5: The correlation matrix of the outgoing signals,
, of an -port antenna in a random field, , is diagonalized as

(38)

by the reception matrix

(39)

where is diagonal matrix containing the strongest and
distinct eigenvalues of , and is the matrix containing
the corresponding eigenvectors. The derivation is given in
Appendix E.

The physical interpretation of Proposition 8 is that in order to
diagonalize the correlation matrix of the received signals, ,
and at the same time obtain the largest possible power, then the
columns of the receiving matrix should be chosen so that they
equal the eigenvectors of the matrix corresponding to its
strongest and distinct eigenvalues.

Remark 2: The received power of the minimum correlation
-port antenna in a random field, , is therefore

(40)

V. NUMERICAL EXAMPLES

It is well understood that the same antenna performs differ-
ently depending on the operating environment, i.e., an antenna
that is good in one propagation environments might not op-
erate equally well in other environments. Therefore, knowing
the properties of the propagation channel is indispensable if

communication performance is to be optimized. In this con-
text, channel modeling naturally becomes an important link in
the antenna design process. In general, channel modeling is a
wide field of research and realistic channel models can be quite
complex, see e.g., [21], [1], [26]. However, since we here just
aim at illustrating the role of spatio-polar selectivity in the an-
tenna-channel interaction we are going to present simulation re-
sults based on a simple channel model where a two dimensional
Laplacian distribution in spherical coordinates is assumed for
the AoA for each of the two orthogonal polarizations, i.e.,

(41)

where and x stands for either of
or , polarization, and the shape is controlled by the distribu-
tion parameters . The XPR expressed in dB
takes on three values, i.e., , which is approxi-
mately the span of variation of the XPR of the incident field
measured in cellular communication channels. Further, in order
to simplify the analysis we assume that

and . It is worthwhile to observe
that the isotropic model is obtained as a limit case of the 2D
Laplacian model (41) by letting,

(42)

Moreover, with the isotropic AoA distribution, a zero dB
channel XPR is usually assumed, i.e., dB, meaning
that the power in the two orthogonal polarizations is the same.
The presented models produce a Rayleigh probability density
function for the envelopes of the received signals.

A. The Rectangular Microstrip Element in a Gaussian Field
With Laplacian PAS

The rectangular microstrip element or patch antenna is a good
example of an antenna widely used in many applications due to
its versatility, e.g., in terms of diversity of patterns and polar-
izations. Here, we use a numerical model of a probe fed patch
antenna on a dielectric substrate simulated with the efield elec-
tromagnetic solver [27]. The coaxial probe is modelled by a wire
with a delta voltage source. All parts are centered at the origin
of a right handed Cartesian coordinate system. The geometrical
parameters of the antenna shown in Fig. 1 are as follows: length

mm, width mm and feed position from center,
mm. The square ground plane is of dimension

mm, the substrate thickness is mm with relative dielec-
tric constant . The antenna resonance frequency is 3.25
GHz. We consider two different orientations of the patch: in the
first, the antenna substrate is on the horizontal, - plane; in the
second the substrate is vertically oriented (obtained by rotating
the -axis towards the -axis), which we denote as horizontal
patch and vertical patch, respectively.

The spherical vector wave mode expansion coefficients of
the horizontal patch and vertical patch antennas are given in
Fig. 2(a) and (b), respectively. Observe that only the mode
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Fig. 1. The horizontal patch antenna. The vertical patch is obtained by
a rotation around the y-axis towards the x-axis.

Fig. 2. Spherical vector wave expansion coefficients of (a) horizontal patch
antenna and (b) the vertical patch antenna.

indices excited by the antennas are shown. As can be seen the
multipole modes that are predominantly excited by the patch
antennas are the dipole moments with multiindices from 1
to 6.

The corresponding average powers of the modes excited by the
random field generated accordingly to the Laplacian probability
density functions (41) are shown in Fig. 3. At first glance
the behavior of the modes seems rather “chaotic,” however,
a closer look reveals a systematic behavior as predicted by
the theory provided in previous sections. Several observations
follow from the plots in Fig. 3. Firstly, we can observe that the
powers of the different modes become more uniform as the
r.m.s. angle spread, , increases, i.e., the channel becomes less
selective in the multimode domain. This is a consequence of
the well-known fact that the more uniform the distribution of
AoAs on the sphere of unit radius, the smaller the significance
of particular orientation in space. Secondly, the average mode

Fig. 3. Average mode power versus mode index for the random field
simulated according to (41).

powers show a symmetric dependence in the index as a function
of the channel cross-polarization ratio, when expressed in
dB. For example, compare plots a), d), and g): as changes
from dB to 10 dB, the power of the TE modes
and TM modes interchange values for fixed and

indices. Thus, the dipole mode with for
dB has the same power as the dipole mode with for

dB and vice-versa, while for dB both powers
are equal. The same applies for dipole pairs 3 and 4 and 5 and
6, etc. Hence, selectivity/non-selectivity in the spatio-polar
domain is equivalent to the selectivity/non-selective in the
mode domain.

In Section IV we gave a definition of the MEG in terms of
the spherical vector wave expansion coefficients. As we stated
there, the MEG is a figure of merit of the interaction of the
antenna with the channel. The physical meaning is straight-
forward, the more multimodes excited by the antenna match
the corresponding channel modes, the better the antenna per-
formance will be in terms of link gain. This is illustrated in
Fig. 4, where the cdf (cumulative distribution function) of the
normalized “instantaneous” link gain6 ,
is shown. Curves for the horizontally oriented patch and the
vertically oriented patch antennas are represented by the dis-
continuous and continuous lines, respectively. As can be seen
the MEG is different for all the 9 propagation scenarios con-
sidered. This can be explained by the fact that the directivity of
the two considered antennas have not been suitably matched to
the PAS of the incoming field. Or looking at it from the point
of view of the spherical vector waves, the multimodes excited
by the antenna (Fig. 2) do not match the corresponding channel
multimodes (Fig. 3). In general, for some channel realizations
the “matching” is bad, while for others it is much better, which
gives place to the “fading” behavior. The dynamic range varies
between 20 to 40 dB.

Also in Section IV we showed the conditions for link gain
maximization: multimode conjugate mode matching, (36). An
example of the conjugate mode matching for idealized antennas

6We assume 100% efficient antennas, i.e., � � � for all � antenna ports.
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Fig. 4. Cumulative distribution functions (cdf) of the normalized instanta-
neous gain of the horizontal patch �- -�, the vertical patch �–� and the conjugate
matched antennas, �� � ��. Results are shown for different values of the channel
cross-polarization ratio, � and the �-parameter of the Laplace distribution of
the AoA.

is given which is illustrated in Fig. 3. The plots depict the “in-
stantaneous” link gain of antennas that are mode-matched only
to the TM dipole modes. Here we can see that even if the MEG
in this case does not equal dB as it would be
obtained by the full mode matching, a considerable increase in
performance is observed and it is independent from the channel
cross-polarization ratio, and only slightly dependent on the
angle spread, . This immediately suggests that, in principle, if
an antenna is constructed such as it conjugate-matches the three
lowest dipoles a considerable link power improved could be ob-
tained in most cases compared with the two patches.

B. The Elementary “Tripole” in a Gaussian Field With
Laplacian PAS

Here, we have chosen to investigate the spatio-polar perfor-
mance of antennas by means of the “tripole” antenna [28]. The
main reason for choosing this antenna is that it combines the
three lowest modes of the electromagnetic field but still might
provide full polarization flexibility as we saw from the previous
section. The tripole antenna is a polarization diversity antenna
system.

Fig. 5 shows the statistics of the normalized squared enve-
lope corresponding to the three-orthogonal dipoles that corre-
spond to the first three electrical modes of the multipole ex-
pansion, , with corresponding to the multi-index set

to and to , respec-
tively, where the multi-index , is ordered and identified with
the number . Cumulative distri-
bution functions (cdf) of the three polarization branches of the
tripole antenna are shown for different values of the channel
cross-polarization ratio, and the -parameter of the Laplace
distribution of the AoA. Observe that, as expected, the powers
of the two horizontal dipoles, and are identically dis-
tributed, while the power of the vertical dipole, , (depicted

Fig. 5. Cumulative distribution functions (cdf) of � of the vertical dipole and
the two horizontal dipole elements of the tripole antenna denoted by �- -�� ���
and ������, respectively. Results are shown for different values of the channel
cross-polarization ratio, � and the �-parameter of the Laplace distribution of
the AoA, where � � ����� is the multipole multi-index.

by the discontinuous line) is shifted some dBs to the left or the
right depending on the channel XPR.

From a closer analysis of Fig. 5, we see that the average power
of the three modes satisfies the following inequalities at all angle
spread values

(43)

(44)

(45)

This is a result of power imbalance between the and polar-
izations, quantified by the channel XPR, , even when the total
field is unpolarized as it is the case in our simulations. Hence,
in this type of channels, the polarization imbalance has a larger
impact on the mode power than the angle spread. On the other
hand, the angle spread has a major impact on the correlation of
the different multimodes. Fig. 5 shows the elements of the cor-
relation matrix .

Here we can observe that mode correlation increases for low
angular spreads, while it decreases for more isotropic channels.
This, of course, is a known result. However, the new aspect here
is that we can achieve uncorrelated signals based on the mode
analysis of the channel as shown in Section IV. Here, we have
limited our analysis to the three lowest modes for illustrative
purposes only. In general (as shown in Section IV) the degrees
of freedom for diversity and spatial multiplexing transmission
are limited by the minimum of the number of excited modes
and the number of antenna ports.

Since we have three modes that can be excited at three an-
tenna ports, the solution to decorrelated signal is given by (39),
which states that the transmission matrix should be equal to the
Hermitian transpose of the matrix containing the eigenvectors of
the correlation matrix of the multipoles. By doing so we indeed
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Fig. 6. Elements of the covariance matrix � where � � ����� is the mul-
tipole multi-index where � � ������ ���� � ����� �� and � � ����� ��.

achieve uncorrelated signals. The fading variation of the com-
bined antenna diversity branches is identical to the maximum
ratio combining (MRC) applied to the multipoles. The cdf of
the MRC signal is shown in Fig. 6 and is identical to the cdf
of TM-2 matched signal, i.e., in this case mode matching and
MRC are equivalent.

VI. SUMMARY

In this paper we have introduced a new approach to analyze
the interaction between antennas and the propagation channel.
Our method employs the scattering matrix of the antenna and
the spherical vector wave expansion of the electromagnetic
field. The focus is on the spatio-polar characterization of the an-
tennas, the channel and their interaction. The key contribution
of our paper can be summarized as follows: we show that in a
Gaussian electromagnetic field (the propagation channel) each
multimode coefficient in the spherical vector wave expansion
is a Gaussian variate, as a consequence the envelope of each
multimode coefficient in the spherical vector wave expansion
is a Ricean variate. We derive closed-form expressions for the
mode correlation matrix for arbitrary power angular spectra
(PAS) of incoming waves, we derive closed-form expressions
for the normalized power of single modes in terms of the PAS of
incoming waves and the channel cross-polarization ratio (XPR).
We then show that maximum received (transmitted) power is
achieved by conjugate mode matching and that independent
signals are achieved by eigenmode (reception) transmission
over the strongest multimodes. A definition of the MEG of
antennas based on scattering matrix parameters is provided and
we show that maximum MEG is achieved by conjugate mode
matching. The results presented here provide not only limits on
the achievable performance of antennas in random propagation
channels, but also provide a framework for a detailed analysis
of antenna-channel interaction. Future work will investigate
MIMO systems and whether this framework can also be used
for antenna synthesis.

APPENDIX A
SPHERICAL VECTOR WAVES

The regular spherical vector waves are given by

(46)

(47)

where the time convention is used and are the regular
spherical Bessel functions.

Similarly, the incoming and outgoing spher-
ical vector waves, are given by

(48)

(49)

where are the spherical Hankel functions of the p-th
kind.

The functions are the spherical vector harmonics
that satisfy the complex valued inner product, i.e., orthogonality
on the unit sphere [14],

(50)

The addition theorem for the vector spherical harmonics is

(51)

APPENDIX B
PROOF OF PROPOSITION 1

Proof: The correlation matrix for the expansion coeffi-
cients, i.e., mode correlation is computed as

(52)

Now, in order to simplify the notation we use the integral rep-
resentation obtained in the limiting case of a continuum of in-
coming waves. Hence, the coefficients can be computed as

(53)

Hence

(54)
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Further, by inserting the spatial correlation conditions (4) we
obtain that the mode correlation can be expressed as the sum
of the mode correlation corresponding to the polarized and the
unpolarized components

(55)

where mode correlation of the polarized component is given by

(56)

where and is a phase angle
that depends on the polarization, e.g., , for a linearly po-
larized wave and for circularly polarized waves.
Similarly, the mode correlation corresponding to the unpolar-
ized component can be calculated as follows

(57)

which concludes the proof.

APPENDIX C
DERIVATION OF LEMMA 1

Proof: The spherical vector wave multimode expansion
coefficients are given by (10)–(12), where we have assumed
a mixed field with both random Gaussian, unpolarized, field
components and one deterministic, polarized, field component.
The Gaussianity of the multipole modes follows directly from
the Gaussianity assumption of the incident field and the fact
that Gaussian variables remain Gaussian under summation and
affine transformations in general.

The mean is directly obtained from the fact that the average
of the expansion coefficients corresponding to the unpolarized
waves is zero, . Hence, the average of the expan-
sion coefficients is given by

(58)

The second moment of the mode distribution follows from
Proposition 1 by considering the diagonal elements of correla-
tion matrix for the expansion coefficients, i.e., the mode corre-
lation. Hence, the second moment or the mode power can be
expressed as the sum of the mode power corresponding to the
linearly polarized and the unpolarized components

(59)

where and .

APPENDIX D
PROOF OF PROPOSITION 2

Proof: From (31) we can write the total power of the out-
going signals from the -port antenna

(60)

where we have introduced the multi-index , ordered
and identified with the number . By
the Cauchy-Schwartz-Buniakovskii inequality

(61)

Equality is achieved for , where is a constant.
From (26) and using normalization, and

(62)

we get for the transmission coefficients

(63)

Using the Lorentz condition for reciprocal antennas (30) we find
out the constants

(64)

where is an arbitrary phase. Then, we finally arrive at the
inequality that concludes the proof

(65)

APPENDIX E
PROOF OF PROPOSITION 5

Proof: Given the correlation matrix of outgoing waves

(66)

perform the diagonalization, , which leads to

(67)

where , now choose , where
is a matrix containing first eigenvectors of , corresponding
the ordered eigenvalues in

(68)

Now, using the normalization and

(69)
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we get for the transmission coefficients

(70)

where we have made use of the multi-index notation,
, ordered and identified with the number

. Hence, since

(71)

(72)

we get for the final result

(73)

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their valuable
suggestions that greatly helped to improve the paper.

REFERENCES

[1] H. Asplund, A. Alayon Glazunov, A. F. Molisch, K. I. Pedersen, and M.
Steinbauer, “The cost 259 directional channel model—Part II: Macro-
cells,” IEEE Trans. Wireless Commun., vol. 5, pp. 3434–3450, Dec.
2006.

[2] T. Svantesson, “An antenna solution for MIMO channels: The multi-
mode antenna,” in Conf. Record 34th Asilomar Conf. on Signals, Syst.
and Comput., Oct. 29 –Nov. 1 2000, vol. 2, pp. 1617–1621, vol. 2.

[3] T. Svantesson, “On the potential of multimode antenna diversity,” in
Proc. IEEE 52nd Veh. Technol. Conf. VTS-Fall, Sep. 24–28, 2000, vol.
5, pp. 2368–2372.

[4] T. S. Pollock, T. D. Abhayapala, and R. A. Kennedy, “Introducing
space into MIMO capacity calculations,” J. Telecommun. Syst., vol. 24,
no. 2, pp. 415–436, 2003.

[5] T. Pollock, T. Abhayapala, and R. Kennedy, “Spatial limits to MIMO
capacity in general scattering environments,” in Proc. 7th Int. Symp. on
DSP for Commun. Syst., Dec. 2003, pp. 49–54.

[6] S. Loyka, “Information theory and electromagnetism: Are they re-
lated?,” presented at the in Int. Symp. on Antenna Technol. and App.
Electromagn. (ANTEM04), Ottawa, Canada, Jul 20–23, 2004.

[7] J. Jensen and M. A. Wallace, “A review of antennas and propagation
for MIMO wireless communications,” IEEE Trans. Antennas Propag.,
vol. 52, no. 11, pp. 2810–2824, Nov. 2004.

[8] L. Hanlen and M. Fu, “Wireless communication systems with-spatial
diversity: A volumetric model,” IEEE Trans. Wireless Commun., vol.
5, pp. 133–142, Jan. 2006.

[9] L. W. Hanlen and R. C. Timo, “Intrinsic capacity of random scattered
spatial communication,” in Proc. IEEE Inf. Theory Workshop ITW’06,
Chengdu, Oct. 2006, pp. 281–285.

[10] A. F. Molisch, Wireless Communications. Piscataway, NJ/New York:
IEEE Press/Wiley, 2005.

[11] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur.
Trans. Telecommun., vol. 10, Nov.–Dec. 1999.

[12] G. J. Foschini and M. J. Gans, “On limits of wireless communications
in fading environments when using multiple antennas,” Wireless Per-
sonal Commun., vol. 6, pp. 311–335, 1998.

[13] W. W. Hansen, “A new type of expansion in radiating problems,” Phys.
Review, vol. 47, pp. 139–143, Jan. 1935.

[14] , J. E. Hansen, Ed., Spherical Near-Field Antenna Measurements.
London, U.K.: Peter Peregrinus, 1988.

[15] L. Chu, “Physical limitations of omni-directional antennas,” Appl.
Phys., vol. 19, pp. 1163–1175, Dec. 1948.

[16] M. Gustafsson and S. Nordebo, “Characterization of MIMO antennas
using spherical vector waves,” IEEE Trans. Antennas Propag., vol. 54,
pp. 2679–2682, Sept. 2006.

[17] A. Papoulis, Probability, Random Variables and Stochastic Pro-
cesses. New York: McGraw-Hill, 1991.

[18] P. A. Bello, “Characterization of randomly time-variant linear chan-
nels,” IEEE Trans. Commun. Syst., pp. 360–393, Dec. 1963.

[19] W. C. Jakes, Microwave Mobile Communications. New York: IEEE
Press, 1974.

[20] B. H. Fleury, “First- and second-order characterization of direction dis-
persion and space selectivity in the radio channel,” IEEE Trans. Inf.
Theory, vol. 46, pp. 2027–2044, Sep. 2000.

[21] T. Taga, “Analysis for mean effective gain of mobile antennas in land
mobile radio environments,” IEEE Trans. Veh. Technol., vol. 39, pp.
117–131, May 1990.

[22] T. Hansen and A. Yaghijan, Plane-Wave Theory of Time-Domain
Fields: Near-Field Scanning Applications. New York: Wiley-IEEE
press, May 1999.

[23] R. Fano, “Theoretical limitations on the broadband matching of ar-
bitrary impedances,” J. Franklin Inst., vol. 249, no. 1, 2, pp. 57–83,
139–154, Jan./Feb. 1950.

[24] A. Alayon Glazunov, A. F. Molisch, and F. Tufvesson, “On the mean
effective gain of antennas,” [Online]. Available: http://www.eit.lth.se
2008, no. LUTEDX/(TEAT-7161)/1-23/(2007), (submitted to IET Mi-
crowave Antennas and Propagation)

[25] M. Gustafsson and S. Nordebo, “On the spectral efficiency of a sphere,”
Progr. Electromagn. Res., vol. PIER 67, pp. 275–296, 2007.

[26] COST 273 Final Report: Towards Mobile Broadband Multimedia Net-
works, L. Correia, Ed. Amsterdam, The Netherlands: Elsevier, 2006.

[27] [Online]. Available: http://www.efieldsolutions.com/
[28] R. T. Compton, Jr., “The tripole antenna: An adaptive array with full

polarization flexibility,” IEEE Trans. Antennas Propag., vol. AP-29,
pp. 944–952, Nov. 1981.

Andrés Alayón Glazunov (S’07) was born in Havana, Cuba, in 1969. He re-
ceived the M.Sc. (Engineer-Researcher) degree from Saint Petersburg’s Poly-
technical University, Saint Petersburg, Russia and the Ph.D. degree from Lund
University, Lund, Sweden, in 1994 and 2009, respectively, both in electrical en-
gineering.

From 1996 to 2001, he was a member of the Research Staff at Ericsson Re-
search, Ericsson AB, Kista, Sweden, where he conducted research in the areas
of RAKE receiver performance evaluation for UMTS, applied electromagnetic
wave propagation and stochastic channel modeling for wireless communica-
tions systems. In 2001, he joined Telia Research, Sweden, where he held a Se-
nior Research Engineer position dealing with UWB and WCDMA research.
From 2003 to 2006, he was with TeliaSonera, Sweden, as a Senior Specialist
in antenna systems and propagation and pursued research in smart antennas,
network optimization and handset antenna efficiency measurements and eval-
uation of their impact on wireless network performance. He has contributed to
the 3GPP and the ITU international standardization bodies, to develop measure-
ments of radio performances for UMTS/GSM terminals and outdoor-to-indoor
propagation models, respectively. He has participated in the European research
initiatives “COST 259,” “COST273,” EVEREST, and NEWCOM. His current
research interest is focused on the interaction between the antennas and the radio
propagation channel for MIMO wireless systems, electromagnetic theory, in-
verse problems and stochastic signal processing.

Mats Gustafsson (M’07) received the M.Sc. degree
in engineering physics and the Ph.D. degree in
electromagnetic theory from Lund University, Lund,
Sweden, in 1994 and 2000, respectively.

In 2000, he joined Electromagnetic Theory
Group, Department of Electrical and Information
Technology, Lund University, where he is presently
an Associate Professor and was appointed Docent in
Electromagnetic Theory in 2005. He co-founded the
company Phase Holographic Imaging AB in 2004.
His research interests are inverse scattering and

imaging with applications in microwave tomography and digital holography,
scattering theory, and antenna theory.

Authorized licensed use limited to: University of Southern California. Downloaded on May 04,2020 at 05:41:18 UTC from IEEE Xplore.  Restrictions apply. 



ALAYÓN GLAZUNOV et al.: SPHERICAL VECTOR WAVE EXPANSION OF GAUSSIAN FIELDS 2067

Andreas F. Molisch (S’89–M’95–SM’00–F’05) re-
ceived the Dipl. Ing., Dr. techn., and habilitation de-
grees from the Technical University Vienna (TU Vi-
enna), Vienna, Austria, in 1990, 1994, and 1999, re-
spectively.

From 1991 to 2000, he was with TU Vienna where
he became an Associate Professor in 1999. From
2000 to 2002, he was with the Wireless Systems
Research Department, AT&T (Bell) Laboratories
Research, Middletown, NJ. From 2002 to 2008,
he has with Mitsubishi Electric Research Labs,

Cambridge, MA, most recently as a Distinguished Member of Technical Staff
and Chief Wireless Standards Architect. Concurrently, he was also a Professor
and Chairholder for Radio Systems at Lund University, Lund, Sweden. Since
2009, he is a Professor of electrical engineering at the University of Southern
California, Los Angeles. He has performed research in the areas of SAW
filters, radiative transfer in atomic vapors, atomic line filters, smart antennas,
and wideband systems. His current research interests are measurement and
modeling of mobile radio channels, UWB, cooperative communications, and
MIMO systems. He has authored, coauthored, or edited four books (among
them the textbook Wireless Communications, Wiley-IEEE Press), 11 book
chapters, more than 110 journal papers, and numerous conference contribu-
tions, as well as more than 70 patents and 60 standards contributions.

Dr. Molisch is a Fellow of the IEEE, the Institution of Engineering and Tech-
nology (IET), London, U.K., an IEEE Distinguished Lecturer, and the recipient
of several awards. He is an Area Editor for antennas and propagation of the
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS and co-editor of special
issues of several journals. He has been member of numerous TPCs, Vice Chair
of the TPC of VTC 2005 spring, General Chair of ICUWB 2006, TPC Co-Chair
of the wireless symposium of Globecomm 2007, TPC Chair of Chinacom 2007,
and General Chair of Chinacom 2008. He has participated in the European re-
search initiatives “COST 231,” “COST 259,” and “COST273,” where he was
Chairman of the MIMO channel working group. He was Chairman of the IEEE
802.15.4a channel model standardization group. From 2005 to 2008, he was also
Chairman of Commission C (signals and systems) of the International Union of
Radio Scientists (URSI), and since 2009, he is the Chair of the Radio Commu-
nications Committee of the IEEE Communications Society. Dr. Molisch

Fredrik Tufvesson (SM’07) was born in Lund,
Sweden, in 1970. He received the M.S. degree in
electrical engineering, the Licentiate Degree in 1998,
and the Ph.D. degree from Lund University, in 1994,
1998, and 2000, respectively.

After almost two years at a startup company, Fiber-
less Society, he is now an Associate Professor in the
Department of Electroscience, Lund University. His
main research interests are channel measurements
and modeling for wireless communication, including
channels for both MIMO and UWB systems. Beside

this, he also works with channel estimation and synchronization problems,
OFDM system design and UWB transceiver design.

Gerhard Kristensson (SM’90) was born in 1949. He
received the B.S. degree in mathematics and physics
and the Ph.D. degree in theoretical physics from the
University of Göteborg, Göteborg, Sweden, in 1973
and 1979, respectively.

From 1977 to 1984, he held a research position
sponsored by the National Swedish Board for Tech-
nical Development (STU). From 1980 to 1984, he
was a Lecturer at the Institute of Theoretical Physics,
Göteborg, where, in 1983, he was appointed Docent
in theoretical physics. From 1984 to 1986, he was a

Visiting Scientist in the Applied Mathematical Sciences Group, Ames Labora-
tory, Iowa State University. He held a Docent position in the Department of Elec-
tromagnetic Theory, Royal Institute of Technology, Stockholm, during 1986 to
1989, and in 1989 he was appointed Chair of Electromagnetic Theory at Lund
Institute of Technology, Lund, Sweden. In 1992, 1997, and 2007, he was a Vis-
iting Erskine Fellow at the Department of Mathematics, University of Canter-
bury, Christchurch, New Zealand. His major research interests are focused on
wave propagation in inhomogeneous media, especially inverse scattering prob-
lems. High frequency scattering methods, asymptotic expansions, optical fibers,
antenna problems, and mixture formulas are also of interest, as well as radome
design problems and homogenization of complex materials. He is the author of
four textbooks and the editor of three scientific books. He has written 10 chap-
ters in scientific books, and he is the author of over 60 peer reviewed journal
papers and over 70 reviewed contributions in conference proceedings.

Dr. Kristensson is a Fellow of the Institute of Physics, U.K., and is an official
member of the International Union of Radio Science (URSI) for Sweden. He
is the Chairman of the Swedish National Committee of Radio Science, SNRV,
and has organized or has been a member of the scientific committee of sev-
eral international and national conferences. He is, or has served as, a member
of the Editorial Board and the Advisory Board of Inverse Problems, the Board
of Editors of Wave Motion, and the Editorial and Review Board of Journal of
Electromagnetic Waves and Applications and Progress in Electromagnetic Re-
search.

Authorized licensed use limited to: University of Southern California. Downloaded on May 04,2020 at 05:41:18 UTC from IEEE Xplore.  Restrictions apply. 


