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Abstract: The authors propose a new physically motivated model that allows the study of the interaction between the
antennas and the propagation channel for multiple-input multiple-output (MIMO) systems.The key tools employed in
the model are the expansion coefficients of the electromagnetic field in spherical vector waves and the scattering
matrix representation of the properties of the antenna. The authors derive the expansion of the MIMO channel
matrix, H, in spherical vector wave modes of the electromagnetic field of the antennas as well as the propagation
channel. The authors also introduce the channel scattering dyadic, C, with a corresponding correlation model for
co-polarised and cross-polarised elements and introduce the concept of mode-to-mode channel mapping, the
M-matrix, between the receive and transmit antenna modes. The M-matrix maps the modes excited by the
transmitting antenna to the modes exciting the receive antennas and vice versa. The covariance statistics of this
M-matrix are expressed as a function of the double-directional power-angular spectrum (PAS) of co-polarised and
cross-polarised components of the electromagnetic field. Their approach aims at gaining insights into the physics
governing the interaction between antennas and channels and it is useful for studying the performance of different
antenna designs in a specified propagation channel as well as for modelling the propagation channel. It can
furthermore be used to quantify the optimal properties of antennas in a given propagation channel. The authors
illustrate the developed methodology by analysing the interaction of a 2 � 2 system of slant polarised half-
wavelength dipole antennas with some basic propagation channel models.
1 Introduction
In the last two decades, communication systems with multi-
port antenna systems at both the receiver and the transmitter,
multiple-input multiple-output (MIMO) systems, have
attracted much attention [1–6]. These systems have the
potential to provide higher bandwidth efficiency and greater
robustness to fading in wireless systems because of their
intrinsic ability to exploit the spatial and polarisation
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domains. The antennas are fundamental elements of the
physical layer and play an essential role in maximising system
performance for a given propagation channel. Therefore a
thorough understanding of the physics of the interaction
between the antennas and the propagation channel is essential
for analysing and optimising MIMO systems.

The first theoretical investigations of MIMO systems
[1–3] were based on the transfer function matrix, the
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H-matrix, which contains as its elements the transfer
function from each transmit antenna element (More
specifically, from each transmit antenna connector to each
receive antenna connector.) to each receive antenna element
and therefore lumps the antenna properties together with
the propagation channel. This approach does not allow
studying the antenna–channel interaction and the antenna
array optimisation. To alleviate this problem, Steinbauer
et al. [7] introduced the ‘double-directional channel model’
that describes the ‘directions-of-departure’ (DoD) and
‘directions-of-arrival’ (DoA) of the multi-path components
(MPCs) or plane waves. Although this expansion has been
used extensively in the past, for example, [8–10] and is
‘natural’ for propagation models, it is not compact (i.e. can
require a large number of terms) and does not give
straightforward insights of the interaction of channels
especially with small antennas. We are therefore interested
in an alternative, compact and physically tractable
description of the joint properties of channels and antennas.

Fortunately, both the propagation channel and the
antennas can be described in terms of the electromagnetic
field and thus a homogeneous characterisation is feasible.
More precisely, it is possible to use the expansion of the
electromagnetic field in spherical vector waves [11],
together with the scattering matrix representation of an
antenna [12] to get a unified description. It is worthwhile
to notice that all properties of multi-port antennas can be
derived from the scattering matrix representation [12],
inclusive mutual coupling between antenna elements of the
same multi-port antenna and/or between the antennas
belonging to different antenna systems and spatially
separated as outlined in [13]. The spherical vector wave
expansion is a natural way to express the polarisation, angle
and spatial properties of MIMO systems. By expressing the
channel directly in the spherical vector wave modes [14], it
is possible to determine the characteristics of a multi-port
antenna system for wireless transmission of information, in
that same propagation channel. Our goal is to formulate a
theoretical framework to study the mechanisms governing
the interaction between antennas and channels in order to
determine the optimum information transmission over
wireless channels with multi-port antenna systems.

Previous theoretical studies employed spherical modes to
represent the propagation channel in terms of scalar fields,
see for example, [15–22]. However, the physics of
electromagnetic fields is naturally described in terms of
vector fields, where the polarisation plays an important role.
The application of the spherical vector wave expansion of
electromagnetic waves as well as the modal expansion in
guiding structures for deterministic MIMO channels has
been intuitively outlined in [23]. There some initial insights
into the electromagnetic MIMO channel capacity are also
provided. A characterisation of the diversity performance of
antennas with multiple elements in terms of cross-
correlation using spherical eigenmodes was presented [24].
We recently introduced the spherical vector wave mode
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expansion of the field and the scattering matrix
representation of the antenna to quantify the interaction
between the antennas and the propagation channel in a
more physically meaningful way. For example in [25–27],
we studied the spectral efficiency of MIMO antennas based
on antenna theory and broadband matching theory in the
isotropic channel (or 3D uniform channel). In [14], our
focus was on the spatio-polar characterisation of an arbitrary
receive multi-port antenna in a random electromagnetic
field. However, the physics of the interaction between
receive antennas, the transmit antennas, and the propagation
channel in MIMO systems was not addressed in previous
research. In this work, we extend the framework for analysis
of antenna–channel interaction to MIMO channels and
multi-port antenna systems at Tx and Rx. This is
accomplished by expressing both the stochastic channel and
deterministic antennas in a unified way. The main
contributions of the paper can be summarised as follows:

1. We introduce the concept of mode-to-mode channel
matrix, the M-matrix, to describe the coupling between the
modes excited by the transmit and the receive antennas.
The M-matrix contains all relevant information about the
channel on a fundamental level, information about the
spherical vector wave modes that are the most likely to be
excited by the propagation channel. The M-matrix also
provides a mapping of modes excited at the receiver and
transmitter, respectively.

2. Using the correlation model for the amplitudes incident at
the receive antenna [14], we derive a general correlation model
for the double-directional channel. More specifically, we study
the correlation between the components of the channel
scattering dyadic C. (This is basically the double-directional
channel transfer function introduced in [7] in combination
with the physical representation in [28].) The dyadic C maps
the field radiated by the transmitting antenna to that
impinging at the receive antenna by superposition of plane
waves. (This is a good approximation when both transmitting
and receiving antennas are in each others’ far-field region as
well as when the distance from the antennas to the scatterers
are much larger than the size of the scatterers. This
approximation is required for the scattering approach assumed
in this paper.) We show that the formulation is equivalent to
the single-scatterer process, where the scatterer represents the
propagation channel. (It is worthwhile to notice that this
equivalence only holds in the narrowband case.)

3. We expand the channel transfer function matrix,
the H-matrix, in spherical vector wave modes, that is, the
M-matrix, using the derived correlation model for the
elements of the channel scattering dyadic. We also provide
results for first- and second-order statistics of the expansion
coefficients based on the assumption that the dyadic
elements are independently distributed Gaussian variables.

The derived equations allow us to establish a relationship
between H and M, and therefore to describe the spatial,
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directional and polarisation properties of the channel and the
antennas for MIMO systems in spherical vector waves.

The remainder of the paper is organised as follows. In
Section 2, we present a brief introduction to the spherical
vector wave expansion of the electromagnetic field and the
antenna scattering matrix. Here we also introduce the
M-matrix concept. Section 3 introduces the channel
scattering dyadic, C, and some of its properties, and derives
a model for the correlation between the dyadic components.
In Section 4, we provide the expansion of the channel
matrix H in spherical vector waves. We further show some
properties of the expansion coefficients and provide a brief
discussion with some specific examples. Section 5 provides
simulation results for a 2 � 2 MIMO slant-antenna
polarisation system with half-wavelength dipoles
orthogonally placed with respect to each other, in a generic
propagation channel. Finally, a summary with conclusions is
in given Section 6.

2 Mode-to-mode MIMO channel
matrix, M
In this section, we present a straightforward treatment that
aims at interconnecting the signals from the receive
antenna, the field from the transmit antenna and the field
impinging at the receive antenna. Building on the approach
of [14], we define two main mathematical tools that
describe the interaction between antennas and channels.
This approach provides a complete description of reciprocal
antennas by using the scattering matrix of the antennas
of each multi-port antenna system involved in the
communications.

Consider two multi-port antennas separated by a distance
d as shown in Fig. 1 where one of them acts as a transmitter
(Tx) and one acts as a receiver (Rx). Further assume that each
antenna phase center coincides with the origin of their own
coordinate system and that there is no mutual coupling
between the Tx and Rx antennas (This is fulfilled when d

Figure 1 Schematic representation of the propagation
channel with non-interacting scatterers and the antennas
0
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is larger than a few wavelengths, that is, in most practically
relevant cases.) though we do allow for mutual coupling
between the elements of the TX antenna (and similarly for
the RX antenna).

The electric field emitted by the Tx antenna, E(t)(rt), can

be expanded into outgoing spherical vector waves u(2)
k (krt),

where rt is the coordinate vector with origin in the phase
centre of the Tx and k! (t, m, l ) is a multi-index that is
also calculated as k ¼ 2(l 2

þ l � 1þ m)þ t, for
l ¼ 1 . . . lmax, m ¼ �l . . . l and t ¼ 1, 2, see Appendices A
and B in [29]. Then, the expansion of the transmitted
electric field in a source-free region (all sources are inside
the sphere with radius at) [11] can be expressed as

E(t)(rt) ¼ k
ffiffiffiffiffiffi
2h

p X
k

bku(2)
k (krt) for jrtj � at (1)

where h is the free-space impedance, k is the wave-number
and the bk are the expansion coefficients. Similarly, the
electric field sensed by the receive antenna, E(r)(rr), can be
expanded in incoming spherical vector waves u(1)

i (krr)

E(r)(rr) ¼ k
ffiffiffiffiffiffi
2h

p X
i

aiu
(1)
i (krr) for jrrj � ar (2)

where i! (t, m, l) is the multi-index notation for the Rx
antenna, which is computed as i ¼ 2(l2

þ l� 1þ m)þ t.

The scattering matrix of an N-port antenna provides a full
description of all its properties [12], that is, the incoming
signals, v [ CN�1 and waves, a [ C1�1, the outgoing
signals, w [ CN�1 and waves b [ C1�1, the matrix
containing the complex antenna reflection coefficients,

G [ CN�N , the matrix containing the antenna receiving
coefficients, R [ CN�1, the matrix containing the antenna
transmitting coefficients, T [ C1�N and the matrix
containing the antenna scattering coefficients S [ C1�1

[12].

G R
T S

� �
v
a

� �
¼

w
b

� �
(3)

From here and on, we will use the term scattering matrix to
denote different mathematical objects, whose meaning will
follow from the context. Based on the spherical wave
expansion above and the scattering matrix representation of
the antenna, we know that a transmitting antenna is
characterised by a ¼ 0 and w ¼ 0. It is worthwhile to
notice that transmit and the receive antennas are each
characterised by a scattering matrix (see (3)), though with
different parameters. Moreover, we use the same notation
for both the transmit and receive antennas. However,
throughout the paper, a, w, R and b, v, T are used to
identify the receive and transmit antennas, respectively.
Consequently, the transmitted signals, v, are mapped into
the outgoing spherical vector wave expansion coefficients,
IET Microw. Antennas Propag., 2010, Vol. 4, Iss. 6, pp. 778–791
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b, by the transmission matrix, T, as

b ¼ Tv (4)

On the other hand, at the receiving side, setting b ¼ 0 and
v ¼ 0, the incoming spherical vector wave expansion
coefficients, a, are mapped into the received signals, w,
through the antenna matrix, R, as

w ¼ Ra (5)

In order to establish a relationship between input–output
signals at the transmit and the receive antennas, that is,
transmitted signals, v, and received signals, w, we need first
to establish a mapping between the outgoing waves at the
transmit antennas, b and the incoming waves at the receive
antenna, a. We do this by using a mode-to-mode mapping
M [26]

a ¼Mb (6)

The mode-to-mode MIMO channel matrix, M, is a stochastic
matrix that describes the properties of the wireless channel in
terms of the multimode expansion coefficients of the
electromagnetic field. Hence, combining (4)–(6), we arrive at
the following linear relationship for the MIMO channel

w ¼ RMTv (7)

Denoting the MIMO channel transfer function by

H ¼ RMT (8)

we then arrive at the classical model for the input–output
relation between the transmitted, x ¼ v, and the received
signals in a noisy channel, y ¼ wþ n

y ¼ Hxþ n (9)

where n is the additive white Gaussian noise (AWGN)
component.

Expressions (4)–(9) establish a full chain of relationships
that enables the analysis of the interaction between the
antennas and the propagation channel and their impact on
the communication link by simple relationships. The
classical transfer function matrix H is a linear function of
the physical properties of both the antennas, R and T and
the propagation channel M.

3 Channel scattering C-dyadic
In the previous section, we introduced a mapping, the
M-matrix, between the modes excited by the transmit
antennas to the modes excited by the receive antenna. The
spatio-polar selectivity nature of the wireless propagation
channels has been extensively investigated for stochastic
propagation channels, we know therefore that the
properties of the M-matrix should be a function of the
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 6, pp. 778–791
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polarimetric double-directional impulse response (if we are
considering a single, deterministic, channel) or the power
angular spectrum (PAS) of each of the orthogonal
polarisations of the electromagnetic waves, as well as the
depolarisation of transmitted waves. The dependence of the
M-matrix on the propagation channel need to be studied
experimentally to fully establish its properties.

In the following, we show from first principles, that the
multiple-scattering processes taking place in the wireless
propagation channel can be described by a scattering dyadic.
Its representation is similar to the scattering dyadic when
only a single-scattering process is considered. This is of
course an effective (or equivalent) description of the actual
scattering process since multiple-scattering actually takes
place within this effective scatterer, that is, the channel.
Backscattering from the channel to the transmitting antenna
as well as from the receiving antenna to the channel is
neglected. Hence, we can model the channel with a ‘black
box’ where the energy that is transmitted in direction k̂t (the
symbol (̂:) denotes a unit vector) traverses the channel by
means of an arbitrary number of interactions with physical
objects (the interactions may be because of scattering,
specular reflection, diffraction and others) and arrives at the
receiver from one or multiple directions k̂r. In the following,
we first derive some properties of the M-matrix for some
special cases (only one scatterer present; only single-
scattering processes), and then give a more general description.

Consider now the situation where there is a single linear
scatterer present at a position in space defined by the
radius-vector rt defined in the coordinate system of the Tx
antenna, see Fig. 7. The field radiated by the transmitting
antenna port j, Ej(rt), is defined in the far-field region by
the far-field amplitude, F j(r̂t) radiated in direction r̂t ¼ rt=rt

Ej(rt) ¼ F j( r̂t )
e�ikrt

krt

þO(r�2
t ) as rt ! 1 (10)

where O(xn) is the ‘big-O’ notation standing for ‘order
of ’ asymptotics, that is, jO(xn)=xn

j , C as x! 1 and
rt ¼ jrtj.

An electric field Ej impinges on a scatterer from direction
r̂t. In the far-field region, the scattered electric field Es is fully
described by the far-field amplitude F s scattered in direction
r̂s ¼ rs=rs as

Es(rs) ¼ F s(r̂s)
e�ikrs

krs

þO(r�2
s ) as rs ! 1 (11)

where F s can be expressed in terms of the scattering dyadic
S(r̂s, r̂t)

F s(r̂s) ¼ S(r̂s, r̂t) � Ej(rt) (12)

where we have assumed that the amplitude of the plane wave
incident at the scatterer from direction r̂t is given by Ej(rt).
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Hence, from (10)–(12), the scattered field can be
expressed as

Es(rs) ’ S(r̂s, r̂t) � F j(r̂t)
e�ik(rsþrt)

k2rsrt

as rs, rt ! 1 (13)

In the far-field region the properties of the field are those of a
plane wave, therefore the scattered field in the far-field region
can be described by a plane wave

Es(rr) ’ E0 e�ikr̂s�rr (14)

with the complex amplitude given by

E0 ¼
e�ikrs

krs

S(r̂s, r̂t) � Ej(rt) (15)

In wireless communications channels, it is seldom the case
that there is only a single scatterer interacting with the
receive and transmit antennas. Many scatterers have to be
considered in order to completely define the propagation
channel. This is hard due to the fact that multiple-
scattering propagation that takes place and the shape and
electromagnetic properties of each scatterer are not exactly
known. However, in many applications the exact physical
properties of the channel scatterers are superfluous. Rather,
we are mainly concerned with the statistical description of
the channel, which is a widely used approach [8, 30, 31].
Of course, if there are scatterers in the near-field region of
the antenna this assumption is not valid. For a handheld
terminal the user’s head, hands or body will in general have
a large impact on the performance. Similarly, for a base
station scenario structures surrounding the base station
antenna will affect its radiation pattern.

We next consider a situation where many scatterers are
present between the transmit and the receive antennas. We
assume that (i) all the scatterers are in the far-field regions
of both the receiver and the transmitter and (ii) scatterers
are grouped such that the maximum dimensions of a group
of scatterers is much smaller than the distances to both the
receiver and the transmitter. The definition of a group of
scatterers here is related to both the classical definition of a
cluster and the concept of multipath groups. However,
strictly speaking it does not fit either of them. A thorough
description of both cluster and multipath group concepts
can be found in [10, 32, 33].

It can be shown that, if assumption (ii) holds, then the
scattered field Es can be written in a similar way as the
single-scatterer case (12)–(13), where the effective
scattering dyadic Se

c (k̂r, k̂t) replaces S for each group of
scatterers. Observe that in order to introduce a more
general framework we from now on express the
directionality of the channels an the antennas in terms of
wave vectors, k̂, instead of radius vectors r̂.
2
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The key difference is that the contributions from the
scatterers in each group of scatterers are superimposed,
leading to fading – in other words, the field arising from
each group of scatterers can be modelled as a stochastic
process. We can then express the total scattered far-field
as a superposition of the scattered fields from each group of
scatterers. Hence, we arrive at the following relationship for Es

Es ¼ C(k̂r, k̂t) � F j(k̂t) (16)

where C(k̂r, k̂t) is the channel scattering dyadic [7, 28]

C(k̂r, k̂t) ¼
X

c

e�ik(rrcþrtc )

k2rrcrtc

S
e
c (k̂r, k̂t) (17)

where the summation is over the group of scatterers, rrc and rtc

are the distances between a reference position within the group
of scatterers and the receiver and the transmitter, respectively.

Since the scattering process is assumed to be linear, it
follows that for reciprocal channels, C(k̂r, k̂t) satisfies the
identity (see Appendix E in [29] for further reference)

C(k̂r, k̂t) ¼ CT(�k̂t, �k̂r) (18)

As a result of the assumptions made, one can further state
that the received field, that is, the field incident at the
receiver can be obtained as a linear transformation of the
transmitted field. Components of the electric field
generated by the transmitter antenna and the electric field
available at the receiver are connected through a matrix that
could be interpreted as a ‘scattering’ dyadic C(k̂r, k̂t), which
is basically the channel transfer function in the ‘angular
domain’ (k̂r, k̂t), or equivalently, the double-directional
impulse response or transfer function [7, 8].

It is worthwhile to observe that the superposition of the
scattered fields from different group of scatterers is true
only when there is no interaction or coupling between each
group of scatterers; in reality the coupling between groups
of scatterers always exists. This is an interesting question
that needs further investigations, but it is outside the scope
of this paper.

3.1 Correlation model for the channel
scattering dyadic, C
In order to further study the statistical properties of the
M-matrix, we need to introduce a correlation model for co-
polarised and cross-polarised elements of the channel
scattering dyadic. We write the stochastic matrix C(k̂r, k̂t) as

C(k̂r, k̂t) ¼
Cuu Cuf
Cfu Cff

� �
(19)

where Cuu and Cff are co-polarised components, Cuf and
Cfu are the cross-polarised components, with u and f
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denoting two orthogonal polarisations. We further postulate
that each entry of C(k̂r, k̂t) is a zero-mean complex Gaussian
variable

kCabl ¼ 0 (20)

where a ¼ {u, f} and b ¼ {u, f} and k � l denote the
ensemble average (see, e.g. [34], p. 285). The Gaussian
assumption is valid if the number of scatterers in each
group of scatterers is large and none of them are
dominating [33].

The cross-covariance is given by

kCabC�a0b0 l ¼ Pab(k̂r, k̂t)d
2(k̂r � k̂

0

r)d
2(k̂t � k̂

0

t)daa0dbb0 (21)

where d2(k̂) ¼ d(u)d(f)=sin (u) denotes the Dirac-delta in
spherical coordinates defined on the sphere of unit radius,
the asterisk (.)� denotes complex conjugate and Pab(k̂r, k̂t)
denotes the double-directional power angular spectrum
(DD-PAS) between polarisation a at the receiver and
polarisation b at the transmitter. See, for example [7, 9, 35,
36] for further details on the DD-PAS.

The DD-PAS of both co-polarised and cross-polarised
components can be expressed in terms of joint probability
distributions of the angle of arrivals (AoAs) and angle of
departures (AoDs) following the convention presented in [14]

Pab(k̂r, k̂t) ¼ Pabpab(k̂r, k̂t) (22)

where Pab denotes the co- or cross-coupling power between
polarisations along a and b. The joint probability density
function pab(k̂r, k̂t) satisfies the normalisation

ð ð
pab(k̂r, k̂t) dVr dVt ¼ 1 (23)

Hence, Pab ¼
Ð Ð
Pab(k̂r, k̂t) dVr dVt, where we have

expressed Pab(k̂r, k̂t) in spherical coordinates.

The covariance model (21) is, as we show in Appendix C
in [29], a direct consequence of the correlation model for the
incident field presented in [14] and the reciprocity of the
wireless propagation channel. Here, for the sake of clarity,
we restrict our analysis to the Rayleigh fading environment.
Extension to the more general Rice case is straightforward
following the exposition presented here and in [14]. The
main assumptions for the model of the Rayleigh case are

1. The phases of the co-polarised waves are independent for
different DoAs k̂ and k̂

0
.

2. The phases of the cross-polarised waves are independent
for any DoAs k̂ and k̂

0
.
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Note that these assumptions are a straightforward
generalisation of the generalised wide sense stationary
uncorrelated scattering (WSSUS) assumption [37, 38].

Let Ea, E0b denote the complex amplitudes of the random
incident electric field in a and b polarisations, respectively,
and ~Ea and ~Eb denote the corresponding components of
the plane wave spectrum, then we summarise the above
postulates

k ~Ea
~E
0�

b l ¼ kEaE�ald2(k̂� k̂
0
)dab (24)

where dab denotes the Kronecker-delta function.

For the characterisation, we also need the cross-
polarisation ratio (XPR) that characterises the power
imbalance between the two orthogonal polarisations. It is
defined as the ratio between the power in the u-polarisation
and the power in the f-polarisation

x ¼
Puu þ Puf

Pfu þ Pff

(25)

where the power of the co-polarised and cross-polarised
components have been defined above. In many practical cases,
Puf ’ Pfu � Puu, Pff and the XPR reduces to x ¼ Puu=Pff:

4 Spherical vector wave
expansion of the double-directional
MIMO channel
Our main focus now is to derive the correlation properties of
the mode-to-mode channel, the M-matrix, given the PAS of
the double-directional channel. The incident field can be
described in either plane waves or spherical vector waves.
This section gives the transformation between the two.

The expansion of an arbitrary electromagnetic field E(r)
at the observation point in space r in regular spherical
vector waves, vi(kr) (see Appendix A in [29]) can be
written as

E(r) ¼ k
ffiffiffiffiffiffi
2h

p X
i

fivi(kr) (26)

The expansion coefficients fi [14] are given by

fi ¼
4p(�i)l�tþ1

k
ffiffiffiffiffiffi
2h
p

ð
A�i (k̂r) � Ẽ0(k̂r) dVr (27)

where Ẽ0(k̂r) denotes the amplitude of the (random) complex
plane-wave spectrum (PWS) in the direction k̂r, and A�i (k̂r) is
the complex conjugated spherical vector harmonic with index
set i! {tml}. The relationship between the incident field at
the antenna and the antenna field of the receiver is given by
(5) and (27) as we outlined in [14]. Next we relate the
incident field to the transmit field, as given by (4)–(6).
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Observing that the PWS of the incident field can be obtained
from the integral over the AoD, (16)

~E0(k̂r) ¼

ð
C(k̂r, k̂t) � F j(k̂t) dVt (28)

We further expand the far-field amplitude of the transmit
field in spherical vector waves in the corresponding
coordinate system

F j(k̂t) ¼ k
ffiffiffiffiffiffi
2h

p X2

t¼1

X1
l¼1

Xl

m¼�l

ilþ2�tTkjvj Ak(k̂t) (29)

By combining (27)–(29), we arrive at the following
expression for the expansion coefficients of the incoming
field in regular spherical vector waves, fij

fij ¼ 4p
X1
k

i1þl�l�tþt

. . .

ð ð
A�i (k̂r) � C(k̂r, k̂t) � Ak(k̂t)Tkjvj dVr dVt (30)

where the index j denotes the contribution from the
corresponding port at the transmit antenna.

The expansion coefficients aij of the incoming waves are
related to the expansion coefficients fij of the regular waves
with multipole index i as

2aij ¼ fij (31)

This result follows from the properties of the spherical vector
wave functions and the fact that the outgoing and incoming
waves carry the same power in free space (empty minimal
sphere), that is, kak2F ¼ kbk

2
F , where the scattering matrix

S ¼ I . Thus, combining (5), (30) and (31), we arrive at the
following expression

Hij ¼ 2p

ð ðX
i

X
k

i1þl�l�tþt

. . . RiiA
�
i (k̂r) � C(k̂r, k̂t) � Ak(k̂t)Tkj dVr dVt (32)

This expression describes the mapping of the outgoing
(output) signal from the receive antenna port i and the
incoming (input) signals at the transmit antenna port j.
Hence, (32) is the expansion of the transfer function
matrix, H, in spherical vector waves under the assumptions
provided above. The elements of the channel matrix Hij

can also be expressed by expanding (8) in terms of the
elements of matrices Rii, Mik and Tkj

Hij ¼
X
i

X
k

RiiMikTkj (33)

where Mik are the elements of the matrix coupling the
spherical vector wave modes at the receiver i! (t, m, l)
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and the transmitter k! (t, m, l ), respectively. Now, by
comparing (32) and (33), we obtain that Mik is given by
the double integral

Mik ¼ 2pi1þl�l�tþt

. . .

ð ð
A�i (k̂r) � C(k̂r, k̂t) � Ak(k̂t) dVr dVt (34)

The entries of the M-matrix, that is, the matrix that maps the
modes excited at the receiver with the modes excited at the
transmitter, are thus directly related to the properties of
the channel scattering dyadic C(k̂r, k̂t).

We now proceed to study the statistical properties of the
mode-to-mode channel, the M-matrix, as well as their
implications on the statistics of the ‘classical’ channel
matrix, the H-matrix. The elements of the correlation
matrix for the entries of the H-matrix can be readily
obtained from (33) as

R
i0j 0

ij ¼
X
i

X
k

X
i0

X
k0

RiiR
�
i0i0R

i0k0

ik Tk,jT
�
k0j 0 (35)

where R
i0j 0

ij ¼ kHijH
�
i0j 0 l denotes the covariance between any

two elements of the H-matrix, and Ri0k0

ik ¼ kMikM�
i0k0 l

denotes the elements of the correlation matrix of the M-matrix.

It is worthwhile to notice that (35) contains the full
characterisation of the joint correlation properties of the
channel and the antennas at both communication link
ends. Therefore if Ri0k0

ik is available, or an estimate thereof,
we can design the communication system that, for example,
maximises the system capacity.

In the following, we study some general properties of the
M-matrix. The following proposition summarises our main
result on the computation of the correlation matrix as
function of the PAS of the double-directional channel.

Proposition 1: In a multipath propagation environment
characterised by a Gaussian unpolarised field component
only (Rayleigh fading), the ‘double-directional’ expansion
coefficients, or the M-matrix entries, are Gaussian variates
with zero mean, kMikl ¼ 0, and variance

Pik ¼ kjMikj
2l ¼ 4p2

X
a

X
bð ð

. . . jAi,a(k̂r)j
2
Pab(k̂r, k̂t)jAk,b(k̂t)j

2 dVr dVt (36)

where the summation is over a ¼ {u, f} and b ¼ {u, f}.
Moreover, the entries of the correlation matrix are functions
of the joint power angular spectrum of the co-polarised and
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cross-polarised components, Ri0k0

ik ¼ kMikM�
i0k0 l

R
i0k0

ik ¼ 4p2il�l 0�lþl0�tþt0þt�t0
X
a

X
bð ð

. . . A�i,a(k̂r)Ai0 ,a(k̂r)Pab(k̂r, k̂t)

. . . Ak,b(k̂t)A
�
k0,b(k̂t) dVr dVt (37)

Usually, the total power in the co-polarised and cross-
polarised components satisfies the normalisation Puuþ

Puf þ Pfu þ Pff ¼ 1. Then normalisation of the total
multipole power, S

2
t¼1S

2
t¼1S

l
m¼�lS

l
m¼�lS

L
l¼1S

L
l¼1Ptml,tml ¼

L2(Lþ 2)2=8, which directly follows from the addition
theorem of spherical vector harmonics [12]. The derivation
follows directly from the Gaussianity preservation property
of affine transformations; details are given in Appendix D
in [29].

As we can see from Proposition 1, the correlation depends
on the joint distributions of co-polarised and cross-polarised
components. Several well-known channels can be interpreted
in the framework of this model. For example, if isotropic
PAS is assumed at both the receiver and the transmitter

Pab(k̂r, k̂t) ¼ 1=16p2 (38)

we obtain that

R
i0k0

ik ¼ dtt 0dmm0dll0dtt0dmm0dll 0 (39)

Hence, all modes are uncorrelated in the isotropic case, this is
the most random field that can be encountered in wireless
channels. The covariance of the H-matrix is then

R
i0j 0

ij ¼
X
i

X
k

RiiR
�
i0,iTkjT

�
kj 0 (40)

In this case, the correlation properties of the H-matrix are, as
we should expect, completely defined by the properties of the
antennas used.

5 Numerical examples
The increasing demand for smaller devices for wireless
communication has led to the search for methods to reduce
the size of antennas in devices such as cellular phones. A
well-known way to keep the volume occupied by antennas
down, while still achieving or even increasing signal
diversity, is to exploit polarisation diversity. Polarisation
diversity has been the objective of extensive theoretical and
practical studies, see [39] and references therein.

In the following example, we apply our approach to a MIMO
system based on polarisation diversity. This example is an
oversimplified antenna configuration that does not take
mutual coupling or matching into account. However, it
serves as a straightforward example demonstrating the main
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 6, pp. 778–791
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points in the paper. We consider a 2 � 2 MIMO system
with cross-polarised antennas at both ends. Two half-
wavelength dipoles are used, one is tilted 458 from the z-axis
towards the positive side of the y-axis, while the second
dipole is also tilted 458 but in the opposite direction. Thus we
denote them as the þ458 dipole and the 2458 dipole,
respectively (see Fig. 2). In order to illustrate how the
multimode expansion can be used to analyse the interaction
between the antennas and the channel, we rotate both
antenna pairs around the x-axis, towards the positive y-axis,
in their respective coordinate systems. The rotation angles are
denoted by ar and at for the receive and the transmit antenna
pairs, respectively.

We denote the transfer function matrix, the H-matrix, of
the system by

H ¼
Hþþ Hþ�
H�þ H��

� �
(41)

where for instance, Hþ 2 denotes the matrix element
coupling the þ458 antenna at the receiver with the 2458
antenna at the transmitter. The notation of the remaining
matrix elements follows the same principle. We keep the
same notation for the rotated antennas.

The polarisation sensitivity of the multi-port antenna
system as a function of the rotation angle can be directly
derived from the behaviour of the multipoles. Fig. 3 shows
the squared absolute values of the transmission (or
reception) coefficients, (For clarity, the transmission
coefficients in Fig. 3 are normalised as

P
i jRij

2
¼ 1.)

jRij
2, for the þ458-dipole and the 2458-dipole antennas

as function of the rotation angle a for the six lowest
multipole multi-indices, i, that is, l ¼ 1. As expected only
the TM dipoles, that is, l ¼ 1 and t ¼ 2, are excited while
the antennas are rotated. (From the properties of spherical
functions, it follows that rotation conserves the power in
the l-index and in the t-index.) Their magnitudes clearly
change, indicating that the coupling to the different modes
changes as the antenna is rotated. For example, at
the initial position, when a ¼ 08, the positions of the

Figure 2 Geometry of the cross-polarised MIMO system
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þ458-dipole and the 2458-dipole antennas are equivalent
because of symmetry and therefore the magnitudes of the
multipoles are the same, with half of the power distributed
equally between the two ‘horizontal’ dipole modes with
i ¼ 2! {2, �1, 1} and i ¼ 6! {2, 1, 1}. In this paper,
we use the complex exponential convention of the spherical
vector waves [12, 25]; therefore no distinct association
between the actual physical orientation of the horizontal
dipoles and the dipole order can be made. The other half
of the power goes into the vertical dipole modes with
i ¼ 4! {2, 0, 1}. As we increase the rotation angle to
a ¼ 108 the tilt angle of the þ458 dipole increases to 558.
At this angle the half-wavelength dipole senses powers in
the horizontal and vertical polarisations in a similar manner
[40]. In this case, the antenna coupling into the three
dipole modes is equal as shown in the left plot of Fig. 3.
Any further increase of the rotation angle implies an
increase of the power into the ‘horizontal’ dipoles with the
proportional decrease of the power into the ‘vertical’ dipole,
which reaches their respective maxima and minimum
for a ¼ 458. On the contrary, for the 2458 dipole, as
the rotation angle increases, the power coupled into
the ‘vertical’ dipole increases, while the power into the
‘horizontal’ dipoles decreases. Owing to symmetry the
reverse process is observed as the rotation angle is increased
towards a ¼ 908.

The correlation between the two antenna branches can
also be explained from the multipole behaviour. For
example, for a ¼ 08, the correlation between the two
antennas should be the highest since, as explained earlier,
both antennas excite the same modes equally. On the other
hand, for a ¼ 458, the two antennas are ‘purely orthogonal’
since they excite orthogonal modes, that is, one antenna,
the þ458 dipole, is oriented along the y-axis, hence only
‘horizontal’ dipoles are excited while the other antenna is
oriented along the z-axis.

We now proceed to specify the channel models we use for
the analysis of the MIMO system. It is well known that an
antenna performs differently depending on the propagation

Figure 3 Squared absolute values of the transmission (or
reception) coefficients, j Rij

2 of the half-wavelength dipole
antenna tilted from þ458 to þ1358 from the z-axis
towards the y-axis (left plot) and the same but for tilting
angles from 2458 toþ458 (right plot)
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environment where it is deployed. Thus, if we by some
means can gain knowledge of the properties of the
propagation channel we can, in principle, improve the
performance in that channel by reconfiguring the antenna
so that it matches the channel characteristics. Here we are,
however, just going to analyse the performance to illustrate
how well (or badly) our simple system performs in terms of
the properties of the channel H-matrix and how the
channel properties depend upon the interaction between
the multipoles of the antenna and that of the channel.

We consider two simple but widely used models. In both
of them it is assumed that the joint probability density
functions are the same for both co-polarised and cross-
polarised components, and that they are independent in
azimuth and elevation

pab(ur, fr, ut, ft) ¼ purab
(ur)pfrab

(fr)putab
(ut)pftab

(ft)

(42)

where a ¼ {u, f} and b ¼ {u, f} stands for either of û or f̂
polarisations. We also assume that the powers of the cross-
polarised components are much lower than the powers of the
co-polarised components, that is, Puf ’ Pfu � Puu, Pff and
therefore the XPR is completely defined by x ¼ Puu=Pff.

Model A describes a highly isotropic channel with a
balanced polarisation (x ¼ 0 dB), where

purab
(u) ¼ putab

(u) ¼ Au e�
ffiffi
2
p
ju�muj=su sin u, u [ [0, p]

(43)

pfrab
(f) ¼ pftab

(f) ¼ Af e�
ffiffi
2
p
jf�mfj=sf , f [ [�p, p)

(44)

where Au ¼ 0:541 and Af ¼ 0:197 computed with parameters
s ¼ su ¼ sf ¼ 10 rad, mu ¼ p=2 and mf ¼ 0 rad.

Model B emulates the propagation in a macro-cell deployed
in an urban environment as outlined in [10]. Here we use the
shape of the distributions provided in [10]. However, the
parametrisation is generic. We assume that

purab
(u) ¼

ffiffiffi
2
p

sin u, u [
p

4
,
p

2

h i
(45)

pfrab
(f) ¼

1

2p
, f [ [�p, p) (46)

putab
(u) ¼ Au e�

ffiffi
2
p
ju�muj=su sin u, u [ [0, p] (47)

pftab
(f) ¼ Af e�

ffiffi
2
p
jf�mfj=sf , f [ [�p, p) (48)

where Au ¼ 7:106 and Af ¼ 7:071 computed with parameters
s ¼ su ¼ sf ¼ 0:1 rad and mu ¼ p=2 and mf ¼ 0 rad. We
also assume unbalanced polarisation in favour to the vertical
polarisation, that is, x ¼ 10 dB. Here the mobile terminal is
the receiver, whereas the transmitter is the base station.
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Hence, the angle-spread around the Rx is much higher than the
angle-spread around the Tx.

In both models the resulting channels produce a Rayleigh
probability density function for the envelopes of the elements
of the H-matrix.

Figs. 4 and 5 show the average mode-to-mode power,
kjMikj

2l, as a function of the multipole indices at the Rx, i
and the Tx, k, for Model A and Model B, respectively.
The more uniform distribution of the power among the
multimodes of Model A is a direct result of the uniform
distribution of the AoA and the AoD at the receiver and
the transmitter, respectively. The fact that the power into
the vertical and horizontal polarisations is the same, also
supports this uniform power distribution among the modes.
On the other hand, spatial selectivity, as we have at the
transmitter for Model B, together with polarisation power
imbalance also implies selectivity in modes, that is, some
multipole–multipole interactions are stronger than others
as shown in Fig. 5. More specifically, we see from Fig. 5
that the coupling between the power into the ‘vertical’
dipole modes, i ¼ k ¼ 4! {2, 0, 1}, is much stronger
than the power coupling between other modes, since the

Figure 4 Average mode to mode power, kjMikj
2l, as

function of the multipole indices at the receiver, i, and
the transmitter, k, for Model A

Figure 5 Average power mode, kjMikj
2l as function of the

multipole indices at the receiver, i, and the transmitter, k,
for Model B
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XPR of the channel is such that the power into the power
of the vertical polarisation is much stronger than the power
of the horizontal polarisation, x ¼ 10 dB. It can also be
observed that the coupling between electric and magnetic
dipoles is quite strong since the propagation at the receiver
takes place mostly on the horizontal plane.

Figs. 6 and 7 show the absolute values of the correlation
matrix, jRikj, as function of the multipole indices at the
receiver, (i, k), and the transmitter, (i0, k0), for Model A and
Model B, respectively. The index pair (i, k) denotes a multi-
index calculated as i� k, where � denotes the Kronecker
product. As we see from Fig. 6, the multimodes become
uncorrelated in the case of a uniform distribution of AoA
and AoD, whereas the correlation becomes noticeably higher
for the spatially selective channel provided by Model B. It
should be noted that in the case when the power of co-
polarised and cross-polarised components is the same, that is,
Puf ¼ Pfu ¼ Puu ¼ Pff ¼ 1=4 and the joint pdf of the AoA
and AoD is uniform, that is, puu(Vr, Vt) ¼ puf(Vr, Vt) ¼

pfu(Vr, Vt) ¼ pff(Vr, Vt) ¼ 1=16p2, the multimodes have

identical powers given by the diagonal elements of (39).

The channel behaviour in the multipole modes, that is, the
M-matrix, together with the mode behaviour of the antennas,

Figure 6 Absolute value of the covariance matrix, jRikj, as
function of the multipole indices at the receiver, (i, k),
and the transmitter, (i0, k0), for Model A

Figure 7 Absolute value of the covariance matrix, jRikj, as
function of the multipole indices at the receiver, (i, k),
and the transmitter, (i0, k0), for Model B
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given by the transmission and reception matrices R and T,
have direct impact on the behaviour of the H-matrix.
Fig. 8 shows the average power of the elements of the
2 � 2 H-matrix as a function of the rotation angles at the
receiver and the transmitter obtained using Model A. As
we can see, the power is practically the same for all links
and it does not depend on the rotation of the antennas. On
the other hand, similar results obtained using Model B
show how the XPR and spatial selectivity (and therefore
selectivity in modes too) impact the link power. For both
Model A and Model B the powers of the links Hþ2 and
H2þ are mutually symmetric and symmetric with respect
to the rotation angle a. On the other hand, the powers of
the links Hþþ and H22 are not mutually symmetric,
although each of them is symmetric with respect to the
rotation angle a (Fig. 9). Clearly, the link is strongest for
the H22 link in Model B since both antennas are collinear

Figure 8 Average power of the elements of the 2 � 2
H-matrix as a function of the rotation angles at the
receiver and the transmitter, Model A

Figure 9 Average power of the elements of the 2 � 2
H-matrix as a function of the rotation angles at the
receiver and the transmitter, Model B
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and their polarisations coincide with the polarisation of the
channel (see Figs. 3 and 5 for a comparison).

The correlation coefficients of the H-matrix are shown in
Figs. 10 and 11, for Model A and Model B, respectively. As
anticipated by the mode correlation in Fig. 7, the correlation
coefficient is low for Model A as shown in Fig. 10. Here, we
also observe a symmetric behaviour for the corresponding
links. Moreover, we see that for the isotropic channel
discussed above the covariance is only determined by the
antennas, see (40). On the other hand, the correlation
increases considerably with spatial selectivity as in Model
B, shown in Fig. 11. Also here, the behaviour can be
anticipated by the covariance of the multimodes observed
in Fig. 7. The asymmetrical behaviour of the correlation
coefficients is explained by the asymmetry in AoA and
AoD as well as the power polarisation imbalance.

Figure 10 Correlation coefficients between pairs of
elements of the 2 � 2 H-matrix as a function of the
rotation angles at the receiver and the transmitter, Model A

Figure 11 Correlation coefficients between pairs of
elements of the 2 � 2 H-matrix as a function of the
rotation angles at the receiver and the transmitter, Model B
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As a final remark, we would like to briefly mention spatial-
diversity systems, which draw special attention in the design of
MIMO wireless systems. The topic of spatial diversity has
been thoroughly analysed since the seminal work presented
in [41]. Spatial diversity has proven to have a great impact
on wireless communications systems both through increased
transmission rates and/or increased reliability (lower error
probability) [31]. A system of particular interest, because of
its ‘apparent’ simplicity, is the 2 � 2 MIMO spatial-
diversity system with half-wavelength dipoles placed at some
distance ds from each other. Here we show a short example
when varying ds. The squared absolute values of the
transmission (or reception) coefficients, jRij

2 of a vertically
polarised half-wavelength dipole antenna as a function of
the offset distance from a reference coordinate system,
2ds=l, is given in Fig. 12 (compare with Fig. 3). A similar
behaviour is observed for the second antenna too. As can be
seen from the plot, the translation of the antenna is
equivalent to the excitation of higher order multipoles, for
example, coefficients with multipole index l ¼ 2 have to be
taken into the analysis of the interaction between the
antenna and the channel for a separation as low as l=2. This
‘spread’ in modes can be seen as the origin of the low
correlation between spatially separated antenna branches.
For more compact configurations, for example, ds 	 l=6,
the representation of the antenna is mainly concentrated to
coefficients corresponding to dipole modes (l ¼ 1), more
specifically to the ‘vertical’ dipole moment with i ¼ 4.
Therefore the correlation of closely placed dipoles is high
unless ‘intelligent’ matching measures are taken [20, 42, 43].

6 Summary
In this paper, we introduced the concept of mode-to-mode
channel matrix, the M-matrix, to describe the coupling

Figure 12 Squared absolute values of the transmission (or
reception) coefficients,jRij

2 of one of the vertically
polarised half-wavelength dipole antenna elements as a
function of the offset distance from a reference
coordinate system. It is assumed that there is no mutual
coupling between the antennas
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i: 10.1049/iet-map.2009.0057

Authorized licensed use limited to: University of Southern California. Download
between the spherical vector wave modes excited at the
transmitter to the modes excited at the receiver of a
wireless MIMO system. The M-matrix contains all
relevant information about the physics involving the
excitation of the channel by electromagnetic waves, since it
provide a direct coupling among different multipoles at the
receiver and the transmitter. We further discussed the
concept of the channel scattering dyadic, C, which maps
the field radiated by the transmitting antenna to the field
impinging at the receive antenna obtained by superposition
of plane waves. Further, using the correlation model for the
amplitudes incident at the receive antenna [10], we
developed a more general correlation model for the double-
directional channel, that is, the correlation between the co-
polarised and cross-polarised components of the channel
scattering dyadic. We then expanded the channel H-matrix
in spherical vector wave modes using the derived
correlation model for the elements of the channel scattering
dyadic. We also provided results for first- and second-order
statistics of the expansion coefficients based on the
assumption that the dyadic elements are independently
distributed Gaussian variables. The equations we proved
establish direct relationship between the elements of H and
M, and therefore the spatial, directional and polarisation
properties of the channel and the antennas for MIMO
systems.

Our results can be used to further analyse the interaction
between the antennas and the channel and the performance
limits of antennas in stochastic channels. Further
investigations of the behaviour of the mode-to-mode
channel matrix should also enable valuable insights into
design of small and efficient MIMO antenna arrays.
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