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On the Physical Limitations of the Interaction of a
Spherical Aperture and a Random Field
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Abstract—This paper derives physical limitations on the interac-
tions of antennas exciting TM or TE modes (but not both) and wire-
less propagation channels. The derivation is based on the spherical
vector wave expansion of the electromagnetic field outside a sphere
circumscribing the antennas. The result is an extension of the sem-
inal work of Chu on the classical limitations on maximum antenna
gain and radiation . Rather than maximizing antenna gain in a
single direction we obtain physical limitations on the antenna gain
pattern, which is directly translated to more condensed parame-
ters, i.e., the instantaneous effective gain � and the mean effective
gain � if instantaneous realizations or correlation statistics of the
expansion coefficients of the electromagnetic field are known, re-
spectively. The obtained limitations are on the maximum of �

and � , which establish a trade-off between link gain and .

Index Terms—Mean effective gain, physical bounds, quality
factor, spherical vector waves.

I. INTRODUCTION

B ANDWIDTH is a valuable resource. In wireless commu-
nication systems it can be employed to provide high data

rates and/or to accommodate several communication standards
operating over a wide range of frequencies on the same, com-
monly small, communication device such as a wireless handheld
terminal. Antennas are therefore required to exhibit large band-
widths while occupying a small volume. This is a challenging
requirement ruled by physical limitations. It is well-known that
the radiation properties of an antenna are related to its size [1],
[2]. For example, the radiation , which is defined as the ratio of
the power stored by the reactive field of an antenna to the power
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loss, considerably increases as the electrical size1 of the antenna
decreases [2]. For narrowband antennas, radiation is inversely
proportional to the fractional bandwidth of the antenna.2 Thus, a
high antenna is highly undesirable, since it leads to a narrow
impedance bandwidth for electrically small antennas as well as
poor radiation efficiency due to high ohmic and dielectric losses.

Physical performance limits of antennas were initially estab-
lished by Wheeler, [1], and Chu, [2]. In his work, Chu derived
the lowest possible radiation , the maximum gain and the max-
imum possible gain-to- ratio for linearly polarized omnidirec-
tional antennas using the spherical vector wave expansion of the
electromagnetic field outside the sphere of minimum radius that
completely encloses the antenna. Since then, this problem has
drawn the attention of many researchers, [3]–[12] with a sum-
mary in [13]. Recently, Chu’s classical results have been refined
by new, more precise and general performance limits that de-
pend upon the shapes and materials of the antennas [14].

Traditionally, investigation of antenna performance limits
have involved either (i) the maximization of the antenna gain,

, in some specific direction or (ii) the minimization of the
radiation , or (iii) the maximization of the ratio between them,

, [2], [9]. The latter criterion provides the condition for the
minimum to achieve a certain gain or as the condition for the
maximum gain achievable at a given . Hence, the maximum
ratio provides a compromise between gain and bandwidth
since is roughly proportional to the inverse of the antenna
bandwidth [15].

In most cellular and wireless LAN systems, the mean effec-
tive gain (MEG) is a more important quantity than the maximum
antenna gain. This can be understood as follows: In communi-
cation links with a pronounced line-of-sight (LOS) propagation
path between the receiver and the transmitter, the antenna gain
is indeed a good measure of the communication efficiency of
the antenna, which can be assessed from the Friis equation [16],
[17], and it is clear that the gain should be maximized into the
direction of the LOS component. On the other hand, in multi-
path propagation channels with no dominant component (non-
line-of-sight, NLOS), the maximization of the antenna gain in
a single or specific direction is of less relevance. Rather, we
prefer antennas that are capable of receiving all relevant multi-
path components. Hence, for maximizing performance in NLOS
scenarios, antenna gain is not equally efficient as a figure of
merit of an antenna. We need instead a description that takes
into account the strength of the multipath components (MPCs)

1The electrical size is defined as the product ��, where � is the wave-number
and � is the radius of the smallest sphere circumscribing the antenna.

2For antennas with very large bandwidth, and thus � � �, a direct relation-
ship is difficult to define. Therefore, following Chu’s approach in [2], we always
use ������ �� rather than � to evaluate the radiation quality of an antenna.
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in the different directions, as well as the antenna gain in all those
directions. In this case the radiation gain pattern of the antenna
and the radiation efficiency of the antenna3 together with the po-
larization-dependent, angular distribution of the MPC strength
provide a more useful description. However, such a full charac-
terization of antennas becomes too cumbersome for most prac-
tical purposes. For this reason, the Mean Effective Gain (MEG)
(see, e.g., [18]–[20] for further discussion on MEG) is a more
useful measure of the link quality in a given propagation envi-
ronment. By definition the MEG incorporates parameters that
describe both the antenna and the propagation channel. Essen-
tially, its definition is based on the partial antenna gain patterns4

weighted by the power-angular spectrum (PAS) of the two or-
thogonal polarizations, respectively, and the cross-polarization
ratio (XPR) of the propagation channel.5 We can actually distin-
guish between two link gain parameters, namely the MEG, ,
which weights the gain pattern by the average PAS and XPR,
and the “instantaneous” effective gain, , which weights the
pattern by a realization of the (stochastically varying) channel.
Since most propagation channels in today’s wireless systems
are NLOS, rather than maximizing the antenna gain in a spe-
cific direction, we aim at obtaining the maximum MEG and the
maximum instantaneous gain.

In [20] we showed that both and are maximized when
the receive (or transmit) antenna coefficients equal the complex
conjugates of the expansion coefficients of the incoming field
in spherical vector waves. In this case, the maximum and

are bounded by , where stands for the radiation
efficiency of the antenna port . Conjugate mode-matching pro-
vides a maximization of the link gain performance of an antenna
in a multipath channel, however, without taking into account the
physical limitations imposed by the antennas. Hence, the max-
imization of and was made independently of bandwidth
constraints, which will result in rather narrowband antennas.

In this paper we therefore generalize results obtained by Chu
and Wheeler to antennas in multi-path propagation channels.
We do this by using the spherical vector wave expansion of the
electromagnetic field outside the minimum sphere enclosing the
antenna, [20]. The obtained limitations are on the maximum of

and , which establish a trade-off between link gain
and , i.e., they provide the maximum or maximum for
a given or the minimum for given or . The main
findings are summarized as follows:

1) If realizations of the channel are known, the transmis-
sion coefficients (or reception coefficients for reciprocal
antennas) that optimize are given by the complex
conjugate of the spherical vector wave expansion coeffi-
cients of the field impinging at the antenna, , weighted
by the inverse of the radiation quality of the mode of
order , . Thus, the contribution of higher order modes
will be attenuated (filtered out), because increases

3i.e., how much of the input power at some reference plane or point is actually
radiated by the antenna.

4The partial antenna gain patterns are defined in two orthogonal polarizations,
their sum being equal to the total antenna gain pattern. For 100% effective an-
tennas the antenna gain pattern equals the antenna directivity.

5i.e., the ratio of the power in the �-polarization to the power in the �-polar-
ization.

with the mode order . The corresponding and both
depend on the realizations of meaning that both the
antenna gain pattern and the bandwidth of the antenna
must change adaptively. On the other hand for electrically
small antennas the optimal bandwidth coincides with
Chu’s predictions and is independent of the channel,
while the antenna gain pattern (dipole modes) must still
be adaptively changed. Electrically small antennas are the
most efficient ones in terms of the use of the available
channel modes.

2) If only the correlation matrix of the channel is known, the
transmission coefficients (or reception coefficients for re-
ciprocal antennas) that optimize are given by the
eigenvector corresponding to the largest eigenvalue of the
correlation matrix of the spherical vector wave expansion
coefficients of the field impinging at the antenna, ,
weighted by the inverse of the radiation of the mode
of order , . Here again, the contribution of higher-order
modes will be attenuated (filtered out) as increases with
the mode order . The corresponding and both de-
pend on the correlation matrix of . For electrically small
antennas the optimal bandwidth coincides with Chu’s pre-
dictions and is independent of the correlation properties of
the channel. On the other hand, the optimal antenna gain
pattern (dipole modes) depends on the correlation proper-
ties of the channel. Electrically small antennas are the most
efficient with respect to the use of the available channel
modes in this case too.

3) The optimal performance of multi-port antenna systems
with no mutual coupling, i.e., non-interacting ports is dic-
tated by the optimal performance of the single-port antenna
case since each port must have identical performance.

The remainder of the paper is organized as follows. Section II
presents a brief introduction to the spherical vector wave expan-
sion of the electromagnetic field, the antenna scattering matrix,
the mean effective gain, the instantaneous effective gain and the
radiation of the antenna. In Section III we state and solve
the maximization problem of and for antennas en-
closed in a spherical volume. Here, we also present numerical
results that illustrate our results based on a generic propagation
channel. The conclusions are provided in Section IV.

II. SPHERICAL VECTOR WAVE EXPANSION OF AN ANTENNA,
THE PROPAGATION CHANNEL FIELDS AND RELATED

PARAMETERS

In [20] we developed a formalism for analyzing the interac-
tion between the antennas and the propagation channel, where
the spherical vector wave expansion of the electromagnetic field
and the scattering matrix were employed as the two main mod-
eling tools. We present next the main points of these tools.

Consider an antenna system enclosed by an (imaginary)
sphere of radius . The electric field, , outside this sphere
can be expanded in outgoing spherical vector waves
and incoming spherical vector waves as, [21], [22]

(1)
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where is the multi-index identified with the number
, is the wave-number and is the

free-space impedance; see Appendix A for a brief discussion of
spherical vector waves.

The scattering matrix of an -port antenna provides a full
description of all its properties [22]. The scattering matrix re-
lates the incoming signals, and waves, ,
the outgoing signals, and waves , the
matrix containing the complex antenna reflection coefficients,

, the matrix containing the antenna receiving coef-
ficients, , the matrix containing the antenna trans-
mitting coefficients, and the matrix containing the
antenna scattering coefficients,

(2)

For reciprocal antennas we also notice that the following rela-
tionship is valid [22]

(3)

where and are elements of matrices and ,
respectively. The received (outgoing) signals are given by

(4)

while the transmitted signals are related to the outgoing waves
as

(5)

A. “Instantaneous” Effective Gain and Mean Effective Gain

Consider now a multi-port antenna system with ports in
receive mode. Assume further that the propagation channel6 is
characterized by a random process as described in [20]. Then,
we can compute the “instantaneous” effective gain as

(6)

where is the “instantaneous”
received (or link) power and is the “instan-
taneous” power of the available electromagnetic signals, where

is the Frobenius norm. The symbol denotes Hermitian
transpose.

Besides the instantaneous power it is also relevant to quan-
tify the average received power. The mean effective gain (MEG)
[18], [19] defined in terms of the spherical vector wave expan-
sion coefficients can be computed as [20]

(7)

where is the mode correlation matrix and
is the average power7 of the available electromagnetic signals

6It is worthwhile to notice that through the paper we assume that the spatial
properties of the propagation channel are preserved over the considered band-
width. This assumption is the more accurate the narrower the bandwidth con-
sidered and is sufficient for current communications systems [23], [24].

7A useful normalization of the average link power is obtained from the energy
conservation law and the addition law of spherical vector harmonics.

and is the average received power; de-
notes expectation over the ensemble, and the different ensemble
realizations can be interpreted as being taken over time, space or
frequency. MEG is a measure of the communication efficiency
of a given antenna over the multipath propagation channel [18].
It should be noticed that in general . The instanta-
neous effective gain is a measure of link efficiency that monitors
the fast fading variation over a small-scale area while MEG is a
measure of link efficiency averaged over the small-scale varia-
tion.

B. Radiation of Antennas

The field modes contribute to the radiated power and to the
reactive power. Hence, each mode is characterized by its own
radiation quality factor8 , which for a lossless antenna is de-
fined as the ratio of the energy stored to the radiated energy [5].
The increases rapidly as the electrical size of the antenna
becomes smaller than the mode number , i.e., when ,
where is the ratio of the minimum sphere enclosing the an-
tenna and is the radius of the radiansphere [1].
The inverse of the radiation factor of an antenna is usually
used as an estimate of the fractional bandwidth of an antenna,
i.e., for , where is the center frequency
and is the bandwidth expressed as the difference
between the highest and the lowest frequency occupied by the
antenna.

For a nonresonant antenna, which is tuned to resonance by
a reactive element, i.e., the input impedance of the antenna be-
comes purely real, the radiation is defined as, [15]

(8)

where is the angular frequency, is the stored mag-
netic energy, is the stored electric energy and is the dis-
sipated power, which for lossless antennas equals the radiated
power . At the resonance frequency, the stored magnetic
and electric field energies are equal, . Analytic ex-
pressions for the radiation of mode are given in [5], which
are the same for both and modes
independently of index

(9)

where denote the spherical Hankel function of the 2nd kind
[25] and denotes the real part of x.

The definition of the radiation -factor in the case of a mul-
tiple-antenna system with multiple input ports or a number of
separate antennas in close proximity is not as straightforward
as for the single-port antenna case [2], [15]. As previously, we
assume that the antenna system is circumscribed by a sphere.
We further assume that there is no mutual coupling between

8The � of any mode given by the multi-index ����� depends only on �.
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the antenna ports. This situation is often desirable when de-
signing wireless communication systems since it usually im-
plies low signal correlation and therefore increased diversity
performance. Hence, the multi-port antenna system is basically
a single radiating system.9 Thus, the -factor is computed as the
ratio of the power stored by the reactive field of the whole an-
tenna system to the sum of power losses from all antenna ports.
Hence, the radiation factor of a vertically or horizontally po-
larized antenna can be expressed in terms of the expansion in
spherical waves as

(10)

where the matrix is a diagonal matrix given by

(11)

where is given by (10) and is the matrix containing the
antenna transmitting coefficients. This definition represents an
average behavior. For the single-port antenna case, i.e., ,
when or modes are excited by
the antenna, the radiation is then given by [5]

(12)

where we have introduced the notation for the
transmission coefficient of the single-port antenna.

The -factor of the six lowest order modes is
, which is the minimum achievable , when only one

polarization is excited. On the other hand the combination of
one and one mode gives a lower -factor,

[7].
We can now obtain the of a lossless antenna expanded in

spherical vector waves from (10)–(12). The radiation is a
property of the antenna and the fields related to it. The -factor
does not always provide a perfect description of an antenna in
terms of bandwidth, it however dictates antenna performance
with a clear impact of antenna size on antenna gain. Moreover,
the physical implications are straightforward, antennas with
high -factors have a large amounts of reactive energy stored
in the near zone. This in turn implies that coupling to electro-
magnetic objects in the near-field zone will produce high losses
and in general large currents, narrow bandwidth, and large
frequency sensitivity.

III. OPTIMUM ANTENNA-CHANNEL INTERACTION

We now proceed to derive the maximum of and
of both multi-port antennas and single-port antennas when
solely or modes are excited. It is

9An optional definition is more sensitive to the actual performance of specific
antenna port. According to this definition the radiation � is the average over
each antenna port

� � �
��� ����

��� ���

where ��� denotes the � column of the � matrix. Clearly, this definition
perfectly coincides with (10) if the transmission vectors ��� are the same for
all �.

straightforward to see that a general mathematical formulation
of the problem reads as

(13)

where , is given by (10) and when
evaluating or , when evaluating , where

are the field expansion coefficients corresponding to either
TM or TE modes.

Observing that we have assumed multi-port antennas with
no mutual-coupling between ports each antenna can now be
“adapted” to the field independently from each other. Hence,
the performance of each port in terms of or is iden-
tical to the single-port case, which is mathematically derived in
Appendices B and C. Clearly, since the following relations are
valid

(14)

(15)

where is the number of ports it suffices to consider the single-
port antenna case.

In the following we have chosen to restrict both the link power
and the available power to the same range of modes .
Our goal is therefore to study the interaction of an antenna that
can sense field modes (TE or TM but not both) with maximum
index of at most . Hence, the performance of an antenna is
compared to the field exciting the same modes. In this case the
performance, e.g., the link power obtained with an electrically
small antenna can in fact be larger compared to the performance
of larger antenna as we are going to see in the next sections.
However, if the performance of two antennas are compared rel-
ative the same available power, then, obviously the larger an-
tenna will perform better than or equal to the electrically small
antenna under same conditions.

A. Maximum of Ideal Antennas

The transmission coefficients, that maximize
are obtained as (see Appendix B for a derivation)

(16)

where is a vector containing the complex conjugated values
of the expansion coefficients of the field impinging on the an-
tenna, the index has been interchanged with in order to
represent the link gain as a function of transmission coefficients
instead of reception coefficients, the index takes on 1 or 2 de-
pending on the type of antenna.

The optimum ratio with corresponding and are
given by

(17)

(18)

(19)
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We see from (16)–(19) that the radiation of the partial
modes of the antenna have a filtering effect on the modes of the
propagation channel, , i.e., the optimum transmission coeffi-
cients of an antenna, in the sense of the maximum ratio ,
in a propagation channel characterized by the expansion coeffi-
cients of the field impinging on the antenna, , are attenuated
by the inverse of the radiation of the corresponding partial
waves as the electric length increases for a multipole index
and vice versa.

Both and the corresponding and are, in general,
stochastic variables due to the stochastic nature of the prop-
agation channel. Hence, the optimal antenna must adapt its
transmission coefficients to the realizations of the propagation
channel.10 Obviously, optimal performance must be related to
a specific propagation channel. In other words, when defining
optimal performance of an antenna in a wireless propagation
channel or optimal antenna-channel interaction, the statistics
of the channel, , must be specified. It is also straightforward
to see that for all , , and it holds that in
agreement with [20].

For electrically small antennas 11 the radiation
field of the antenna will be dominated by the dipole modes

and therefore only the first term is of relevance, [2], [7],
leading to the following result

(20)

(21)

(22)

Several conclusions can be drawn from (20)–(22). First we
see that for lossless, electrically small antennas exciting TM
or TE modes only the radiation is identical to the radiation
quality factor of the antenna in “free-space,” i.e., it is indepen-
dent of the propagation channel. Hence, in our analysis band-
width considerations of electrically small antennas in fading
channels remain the same as the ones predicted by Chu for
“spherical antennas.” Moreover, only dipole modes are used and
link gain optimization based on the conjugate mode-matching
criterion established in [20] applies. Hence, the optimum instan-
taneous effective gain is completely determined by the expan-
sion coefficients of the propagation channel in spherical vector
waves. This is a remarkable result since it means that for electri-
cally small antennas, mode-matching of the lowest three modes
(TE or TM) results in maximum link gain with channel adapta-
tion while variable bandwidth is not required.

In the opposite limiting case when the size of the antenna be-
comes large compared to the wavelength, i.e., , the an-
tennas will show a potentially broadband behavior as predicted
by Chu. In this case, when , we set it to be unity since

has no physical meaning in terms of bandwidth, i.e.,
the relative bandwidth cannot be larger than 200%. Therefore

10Even if deemed not practical a variable � means that the bandwidth of the
antenna must also change accordingly.

11The 0.5 threshold is used since for �� ��� the radiation quality factor
� ��.

instead of the matrix containing the quality factor , a modi-
fied matrix is used, ,12 where is the identity
matrix. Hence, as for all . The distribution of
the optimum in this limit is independent of , for a constant

. Indeed, since is set to 1 as then13

(23)

Hence, in the large frequency limit all modes up to will con-
tribute equally to the instantaneous effective gain.

In order to illustrate the theory derived above we now pro-
ceed to a numerical evaluation using a simple channel model
(for justifications of the different assumptions in this model, see
[20]) based on the more advanced channel models presented in
[23], [24]. The model for the AoA for each of the two orthogonal
polarizations assumes a two-dimensional Laplacian distribution
in spherical coordinates, i.e.,

, where eleva-
tion angle , azimuth angle and x stands
for either of - or -polarization, and the shape is controlled by
the distribution parameters . We further as-
sume that emulating chan-
nels of small and large angle spread, respectively; and

, . Since (16)–(19) are independent of the
cross-polarization ratio (XPR14) of the channel, 0 dB is used.

Fig. 1 illustrates the filtering effect of the radiation of the
partial modes of the antenna on the transmission coefficients
given in (16). The channel coefficients were obtained for a single
realization of the channel according to the distribution described
above for and the maximum multi pole order .
We clearly see that for a given electrical size of the antenna
only a subset of all available modes will contribute to the radi-
ated field due to the high losses associated with the higher order
modes.

As we pointed out early, instantaneous parameters are based
on quantities that can be modeled as continuous random vari-
ables, which are best described by probability distributions.
Therefore, both , and will be characterized by their
cumulative distribution functions (cdf), [26], or rather by some
values corresponding to some fixed probability levels, i.e., at
some level of the cdf.

Fig. 2 shows the maximum at three probability levels,
1%, 50% and 99%, as a function of . Clearly, for small and
constant , the median ratio15 as well as the spread16 around the
median increase with the electrical length . Observe that the
median converges17 to as increases since we have only
TM or TE modes at our disposal, but not both, therefore in av-
erage only half of the available power is used. However, for

12The max operator acts elementwise.
13Observe that ����� � �� � and that ���� � �

�� � where � � � or 2.
14The XPR of a channel is defined as the ratio of the power of the vertically

polarized waves to the power of horizontally polarized waves, [18].
15The median is obtained as the value corresponding to the 50% level of the

cdf.
16Here the spread is evaluated as the difference between values corresponding

to the 1% and 99% levels of the cdf.
17This is of course an intuitive result, which will be investigated in the future.
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Fig. 1. Absolute value of the 8 lowest TE modes, a), and TM modes b), of a
realization of the channel; antenna transmission coefficients obtained according
to (16) for �� � ��� and TE modes, c) and TM modes, d), and antenna trans-
mission coefficients for TE modes, e) and TM modes, f) for �� � �.

Fig. 2. Maximum � �� in a propagation channel with small angle spread
�� � ��� ��	
 and in a propagation channel with large angle spread �� �
�� ��	
. Results are obtained at three cdf levels: 1%, 50% and 99% and for
� � �, 2, 3, 4. When � 	 �, it is considered to be unity.

some realizations the mode matching can sometimes result in
a better and sometimes worse depending on whether one
of the TE or TM mode power is predominantly larger than the
other for a given channel realization. For large the behavior
of the median is similar to the small case. Namely, comparing
the left and right plots we see that the small and large are
basically identical. However, the spread around the median is
much larger for the larger and it decreases with . In the lim-
iting case and for large the variance converges to
the same value independently of . This behavior can be better
understood by examining the corresponding results for and

shown in Fig. 3 and Fig. 4, respectively. In the low lim-
iting case decreases as is increasing since the performance
of the antenna that excites modes with “waste” their

Fig. 3. � in a propagation channel with small angle spread �� � ��� ��	

and in a propagation channel with large angle spread �� � �� ��	
. Results are
obtained at three cdf levels: 1%, 50% and 99% and for � � �, 2, 3, 4. When
� 	 �, it is considered to be unity.

Fig. 4. � in a propagation channel with small angle spread �� � ��� ��	

and in a propagation channel with large angle spread �� � �� ��	
. Results are
obtained at three cdf levels: 1%, 50% and 99% and for � � �, 2, 3, 4. When
� 	 �, it is considered to be unity.

power due to large losses connected with large . As the elec-
trical size of the antenna increases, exciting higher modes leads
to an increase in the link power. However, this happens at the
expense of smaller bandwidth as shown in Fig. 4. For a fixed

increasing results in an increase of until a certain
after which the cdf remains constant in the sense of the distri-
bution parameters, with a well marked cutoff. Hence, no further
mode “diversity gain” can be achieved due to limited degrees
of freedom. Observe that is independent of for .
Clearly, to achieve better performance as increases, higher
-index multipoles should be excited and therefore should be

increased.
The smaller variance of for small is explained by the fact

that realizations of the channel modes, , are more correlated
compared to that of large . However, as both and increase,
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Fig. 5. Maximum � �� in a propagation channel with small angle spread
�� � ��� ���� and in a propagation channel with large angle spread �� �
�� ����. Results are obtained for� � �, 2, 3, 4. When� � �, it is considered
to be unity.

the distribution of seems to converge to the same function in-
dependently of . Certainly, increasing for small and large

implies an increase of degrees of freedom. However, since
modes are correlated, the probability of actually “capturing”
most of the power in the TM or TE modes with lower also
increases, as it does increase the probability of capturing a lower
share of the total mode power leading to the broadening effect of
the distribution of as increases for small . On the other
hand for large channel modes are less correlated and there-
fore for small the distribution of is broader than for large

. Now, increasing for large implies again an increase of
degrees of freedom of the antenna resulting in averaging out the
variation of . The antenna radiation as increases
indicating that the antenna has a potentially broadband behavior.

B. Maximum of Ideal Antennas

The transmission coefficients that maximizes (13) with
is given by the eigenvector, , corresponding to

the maximum eigenvalue, , obtained solving the ordinary
eigenvalue problem

(24)

where is the correlation matrix of coefficients corre-
sponding to either TM or TE modes. Hence, values of ,

and can be expressed as

(25)

(26)

(27)

Now for lossless, electrically small antennas we have again
that only terms with will be contributing to the interaction
with the incident field. We have then for

(28)

(29)

(30)

Fig. 6. � in a propagation channel with small angle spread �� � ��� ����
and in a propagation channel with large angle spread �� � �� ����. Results are
obtained for � � �, 2, 3, 4. When � � �, it is considered to be unity.

where is the maximum eigenvalue of the covariance ma-
trix of the modes of the propagation channel , calculated
for dipole modes only (TM or TE) for . These results
are rather similar to the instantaneous channel results; however,
they actually provide the performance limits when the correla-
tion statistics are known rather than each particular realization
of the channel. The maximum effective gain is obtained by ex-
citing the strongest mode of the averaged channel.

In the high frequency limit, i.e., , following the rea-
soning in the previous section , since , where is
the identity matrix. Hence, the problem is reduced to obtaining
the largest eigenvalue of the field correlation matrix containing
TM or TE modes. The optimum MEG is then obtained as

(31)

where is the largest eigenvalue of the correlation matrix
.

Numerical simulations obtained with the simple channel
model described above are shown in Figs. 4, 5 and 6. Fig. 5
shows the maximum as a function of for small and
large and for different values of . We see that for small
and constant , decreases with increasing due to the
decrease of relative to the total available power .
Now, fixing but increasing results in larger (Fig. 6)
until a certain after which it remains constant with a well
marked cutoff. Hence, no further mode “beamforming gain”
can be achieved due to limited degrees of freedom. Observe
that , if only TM or TE modes are used. At
large the trend is somewhat different. Here, is almost in-
dependent of for a constant . On the other hand increasing

for constant will result in a decrease of since the
largest eigenmode will be much lower relative to the total
power in a channels with large . Hence, using large antennas
in spatially uniform channels is not optimal from the point of
view of maximum link gain and dipole-like antennas are the
most suitable, as expected. The bandwidth is only a concern
for electrically small antennas and follows basically , while
larger antennas again show potentially broadband behavior as
shown in Fig. 7.
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Fig. 7. � in a propagation channel with small angle spread �� � ��� ����
and in a propagation channel with large angle spread �� � �� ����. Results are
obtained for � � �, 2, 3, 4. When � � �, it is considered to be unity.

Fig. 8. � corresponding to� � 	� in a propagation channel with small angle
spread �� � ��� ���� and in a propagation channel with large angle spread
�� � �� ����. Results are obtained for � � �, 2, 3, 4 denoted by ���, ����,
���� and ����, respectively. Three cdf levels are considered, which are shown in
a group of three curves for same �; the leftmost corresponds to 1%, the one in
the middle to 50% and the rightmost to 99%. When � � �, it is considered to
be unity.

C. of ideal antennas for which or

Here we consider the radiation corresponding to optimal
and . Now if we are interested in the “instantaneous” re-

alizations of the channel, the optimal lossless antenna will have
coefficients for an antenna exciting TM or TE modes
only and for an antenna that excite both. In this case

independently of the channel and the highest order
mode used. The radiation will considerably increase in this
case as shown in Fig. 8 for the TE- or TM-only case. Compare
this result with Fig. 4. The utilization of both TM and TE modes
will further increase the antenna but by a factor less than an
order of magnitude. We see that in this case the bandwidth and
therefore also the impedance of the antenna should be varied in
order to keep maximum instantaneous gain.

In the case we just want to adapt to the covariance statis-
tics of the channel we can maximize MEG, , by transmitting
with , where is the eigenvector corresponding to
the maximum eigenvalue, , of the mode covariance matrix

or depending on whether only TE, TM or both modes
are used, respectively. In this case also the link maximization
will be achieved at the expenses of bandwidth reduction as de-
picted in Fig. 9; compare with Fig. 7.

Fig. 9. � corresponding to � � 	� in a propagation channel with small
angle spread �� � ��� ���� and in a propagation channel with large angle
spread �� � �� ����. Results are obtained for � � �, 2, 3, 4. When � � �,
it is considered to be unity.

IV. CONCLUSIONS

In this paper, we investigated physical limitations on the in-
teractions of antennas exciting TM or TE modes with wireless
propagation channels. The limitations are derived based on the
spherical vector wave expansion of the electromagnetic field
outside a sphere circumscribing the antennas. Rather than max-
imum antenna gain in a single direction we obtain physical lim-
itations on the mean effective gain, which is a highly relevant
quantity for multi-path propagation channels. The obtained lim-
itations are on the maximum of and , which estab-
lish a trade-off between link gain and (and for narrowband
antennas on bandwidth too). The main findings are summarized
as follows: 1) if realizations of the channel are known, the trans-
mission coefficients (or reception coefficients for reciprocal an-
tennas) that optimize are given by the complex conjugate
of the spherical vector wave expansion coefficients of the field
impinging at the antenna, , weighted by the inverse of the ra-
diation quality of the mode of order , . Thus, the contribution
of higher order modes will be attenuated as increases with
the mode order . 1a) The corresponding and both depend
on the realizations of meaning that both the antenna gain pat-
tern and the bandwidth of the antenna must changed adaptively.
1b) On the other hand for electrically small antennas the optimal
bandwidth coincides with Chu’s predictions and is independent
of the channel, while the antenna gain pattern (dipole modes)
must still be adaptively changed. 1c) Electrically small antennas
are the most efficient with respect to the use of the available
channel modes. 2) If the correlation matrix of the channel is
known, the transmission coefficients (or reception coefficients
for reciprocal antennas) that optimize are given by the
eigenvector corresponding to the largest eigenvalue of the corre-
lation matrix of the spherical vector wave expansion coefficients
of the field impinging at the antenna, , weighted by the in-
verse of the radiation quality of the mode of order , . Here
again, the contribution of higher order modes will be attenuated
as increases with the mode order . 2a) The corresponding
and both depend on the correlation matrix of but are fixed
when the statistics have been established. 2b) For electrically
small antennas the optimal bandwidth coincides with Chu’s pre-
dictions and is independent of the correlation properties of the
channel, while the antenna gain pattern (dipole modes) still are.

Authorized licensed use limited to: University of Southern California. Downloaded on May 04,2020 at 04:54:22 UTC from IEEE Xplore.  Restrictions apply. 



ALAYÓN GLAZUNOV et al.: ON THE PHYSICAL LIMITATIONS OF THE INTERACTION OF A SPHERICAL APERTURE 127

2c) Electrically small antennas are the most efficient with re-
spect to the use of the available channel modes in this case too.
3) The optimal performance of multi-port antenna systems with
no mutual coupling, i.e., non-interacting ports is dictated by the
optimal performance of the single-port antenna case since each
port must have identical performance. These results are practi-
cally relevant especially for the design of antennas for cellular
handsets, which operate in multipath environments, and require
a good bandwidth as well as power efficiency.

APPENDIX A
SPHERICAL VECTOR WAVES

The regular spherical vector waves are given by

(32)

and

(33)
where the time convention is used, , are
the regular spherical Bessel functions, , , and

.
Similarly, the incoming and outgoing spher-

ical vector waves, are given by

(34)

(35)

where are the spherical Hankel functions of the -th
kind.

The functions are the spherical vector harmonics
that satisfy the complex valued inner product, i.e., orthogonality
on the unit sphere [22]

(36)

APPENDIX B

Given and diagonal, the vector that solves
the optimization problem

(37)

is given by the eigenvector, , that corresponds to the
largest eigenvector of the matrix , i.e.,

(38)

Indeed, this is directly obtained from the Rayleigh-Ritz The-
orem [27], applying variable substitution . In the
special case when then the solution to (37) is given by

(39)

This can be seen18 by substituting into (38), which
gives . Then observing that is a constant.
Hence, , where c is a constant obtained from the
normalization .

APPENDIX C

Given and diagonal, the matrix that solves
the optimization problem

(40)

is given by the matrix containing identical row-vectors
each equal where is given by the solution to (37). To
show this result we apply to (40), which gives

(41)

where we used the identity . Ob-
serving that expressions of the form are scalars and
can be considered a constant for a given and that exists
yields

(42)

Now using the identities and
we arrive at the eigenvalue

problem formulation

(43)

which can be obtained by solving

(44)

Further, observing that
and since and

, then (44) is reduced to identical equations

(45)

Hence, the solution to (43) is then given by the matrix
containing identical raw-vectors each equal where

is the solution corresponding to the maximum eigenvalue
(38). In the special case when then the solution to
(40) is given by

(46)

where .
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