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Abstract— We analyze a novel architecture for caching popular
video content to enable wireless device-to-device (D2D) collabo-
ration. We focus on the asymptotic scaling characteristics and
show how they depend on video content popularity statistics.
We identify a fundamental conflict between collaboration distance
and interference and show how to optimize the transmission
power to maximize frequency reuse. Our main result is a
closed form expression of the optimal collaboration distance
as a function of the model parameters. Under the common
assumption of a Zipf distribution for content reuse, we show
that if the Zipf exponent is greater than 1, it is possible to have
a number of D2D interference-free collaboration pairs that scales
linearly in the number of nodes. If the Zipf exponent is smaller
than 1, we identify the best possible scaling in the number of
D2D collaborating links. Surprisingly, a very simple distributed
caching policy achieves the optimal scaling behavior.

Index Terms— Caching, D2D communication, wireless net-
works, video streaming.

I. INTRODUCTION

W IRELESS mobile data traffic is expected to increase by
a factor of 40 over the next five years, from the current

93 Petabytes to 3600 Petabytes per month in the next five
years [1]. This explosive demand is fueled mainly by mobile
video traffic, which is expected to increase by a factor of 65,
and become the by far dominant source of data traffic. Since
the available spectrum is physically limited and the spectral
efficiency of current systems is already close to optimum,
the main method for meeting this increased demand is to
bring content closer to the users. Femto base stations [2] are
currently receiving a lot of attention for this purpose.

A significant bottleneck in such small-cell architectures is
that each station requires a high-rate backhaul link. Helper sta-
tions that replace high-rate backhaul with storage [3], [4] can
ameliorate the problem, but still require additional infrastruc-
ture and have limited flexibility.

To circumvent these problems, we recently proposed the
use of device-to-device (D2D) communications combined with
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video caching in mobile devices [5], [6]. The approach is based
on three key observations: (i) Modern smartphones and tablets
have significant storage capacity, (ii) video has a large amount
of content reuse, i.e., a small number of video files accounts
for a large fraction of the traffic, (iii) D2D communication can
occur over very short distances thus allowing high frequency
reuse. Our proposed architecture functions as follows: users
can collaborate by caching popular content and utilizing local
D2D communication when a user in the vicinity requests a
popular file. The base station can keep track of the availability
of the cached content and direct requests to the most suitable
nearby device; if there is no suitable nearby device, the
BS supplies the requested video file directly, via a traditional
downlink transmission. Storage allows users to collaborate
even when they do not request the same content at the same
time. This is a new dimension in wireless collaboration archi-
tectures beyond relaying and cooperative communications, see
[5]–[7], and references therein.

A D2D video network can be analyzed using a protocol
model, which means that only two devices that are within
a “collaboration distance” of each other can exchange video
files, while devices with a larger distance do not create
any useful signal, but also no interference. The choice of
the collaboration distance represents a tradeoff between two
counteracting effects: decreasing the collaboration distance
increases the frequency reuse and thus the potential through-
put, but on the other hand decreases the probability that a
device can find a requested file cached on another device
within the collaboration distance. In [6] we described this
tradeoff and provided numerical solutions for the optimum
distance, and the resulting system throughput.

In the current paper we concentrate on the analytical treat-
ment of the scaling behavior of a D2D network, i.e., how
the throughput scales as the number of nodes increases. For
conventional ad-hoc networks, scaling results were obtained
in the influential paper by Gupta and Kumar [8] and have
received significant attention under different modeling assump-
tions (e.g. see [9]–[11]). This architecture not only differs
from ad-hoc or collaborative networks in its application, but
also shows a fundamentally different behavior due to its
dependence on the video reuse statistics. We provide a closed
form expression of the optimal collaboration distance as a
function of the content reuse distribution parameters.1

We model the request statistics for video files by a Zipf
distribution, which has been shown to fit well with measured
YouTube video requests [12], [13]. We find that the scaling
laws depend critically on the Zipf parameter, i.e., on the

1This paper was presented in part at ISIT 2012.
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Fig. 1. Random geometric graph example with collaboration distance r(n).

concentration of the request distribution. We show that if
the Zipf exponent of the content reuse distribution is greater
than 1, it is possible to have a number of D2D interference-
free collaboration pairs that scales linearly with the number of
nodes. If the Zipf exponent is smaller than 1, we identify the
best possible scaling in the number of D2D collaborating links.
Surprisingly, a very simple distributed caching policy achieves
the optimal scaling behavior and therefore central coordi-
nation of what each node caches does not improve scaling
behavior.

The remainder of this paper is organized as follows:
In Section II we set up the D2D formulation and explain
the tradeoff between collaboration distance and interference.
Section IV contains our two main theorems, the scaling
behavior for Zipf exponents greater, smaller than and equal
to 1. In Section V we discuss future directions, open problems
and conclusions. Finally, the Appendix contain the proofs of
our theorems.

II. MODEL AND SETUP

In this section, we discuss the fundamental system model;
for a discussion of the assumptions, and justifications of
simplifications, we refer the interested reader to [6].

Assume a cellular network where each cell/base station
(BS) serves n users. For simplicity we assume that the cells
are square, and we neglect inter-cell interference, so that
we can consider one cell in isolation. Users are distributed
randomly and independently in the cell. We assume that the
D2D communication does not interfere with the base station
that can serve video requests that cannot be otherwise covered.
For that reason, our only concern is the maximization of the
number of D2D collaboration links that can be simultaneously
scheduled. We henceforth do not need to consider explicitly
the BS and its associated communications.

The communication is modeled by a standard protocol
model on a random geometric graph (RGG) G(n, r(n)). In this
model users are randomly and uniformly distributed in a
square (cell) of size 1. Two users (assuming D2D communica-
tion is possible) can communicate if their Euclidean distance
is smaller than some collaboration distance r(n) [8], [14]. The
maximum allowable distance for D2D communication r(n) is
determined by the power level for each transmission. Figure 1
illustrates an example of an RGG.

We assume that users may request files from a set of size
m that we call a “library”. The size of this set should increase
as a function of the number of users n. We assume that this
growth should scale sublinearly in the number of users n, e.g.
m could be �(log(n)).2 Note our scaling results hold for any
number of files m and users n and do not depend on a specific
relative scaling between m and n. The sublinear scaling is
used as one particular example of the m(n) relationship that
is expected to often hold in practice, since by increasing the
number of users the overlaps of the user interests will increase.
For larger entities, the chances are higher that multiple people
are interested in the same file (say, a popular movie).

Each user requests a file from the library by sampling
independently using a popularity distribution. Based on several
studies, Zipf distributions have been established as good mod-
els for the measured popularity of video files [12], [13]. Under
this model, the popularity of the i th popular file, denoted by
fi , is inversely proportional to its rank:

fi =
1

iγr

m∑

j=1

1
jγr

, 1 ≤ i ≤ m. (1)

The Zipf exponent γr characterizes the distribution by con-
trolling the relative popularity of files. Larger γr exponents
correspond to higher content reuse, i.e., the first few popular
files account for the majority of requests.

Each user has a storage capacity called cache, which is
populated with some video files. For our scaling law analysis
we assume that all files have the same size, and each user
can store one file. This yields a clean formulation and can be
easily extended for larger storage capacities.

Our scheme works as follows: If a user requests one of
the files stored in neighbors’ caches in the RGG, neighbors
will handle the request locally through D2D communication;
otherwise, the BS should serve the request. Thus, to have D2D
communication it is not sufficient that the distance between
two users be less than r(n); users should also find their desired
files locally in caches of their neighbors. A link between
two users will be called potentially active if one requests a
file that the other is caching. Therefore, the probability of
D2D collaboration opportunities depends on what is stored
and requested by the users.

The decision of what to store can be taken in a distributed
or centralized way. A central control of the caching by the BS
allows very efficient file-assignment to the users. However, if
such control is not desired or the users are highly mobile,
caching has to be optimized in a distributed way. The simple
randomized caching policy we investigate makes each user
choose which file to cache by sampling from a caching
distribution. It is clear that popular files should be stored with
a higher probability, but the question is how much redundancy
we want to have in our distributed cache.

We assume that all D2D links share the same time-frequency
transmission resource within one cell area. This is possible

2We use the standard Landau notation: f (n) = O(g(n)) and f (n) =
�(g(n)) respectively denote | f (n)| ≤ c1g(n) and | f (n)| ≥ c2g(n) for
some constants c1, c2. f (n) = �(g(n)), stands for f (n) = O(g(n)) and
f (n) = �(g(n)). Little-o notation, i.e., f (n) = o(g(n)) is equivalent to
limn→∞ f (n)

g(n) = 0.
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Fig. 2. Random geometric graph, yellow and green nodes indicate receivers,
transmitters in D2D links. Gray nodes get their request files from the BS.
Arrows show all possible D2D links.

since the distance between requesting user and user with the
stored file will typically small. However, there should be no
interference of a transmission by others on an active D2D
link. We assume that (given that node u wants to transmit
to node v) any transmission within range r(n) from v (the
receiver) can introduce interference for the u −v transmission.
Thus, they cannot be activated simultaneously. This model is
known as protocol model; while it neglects important wireless
propagation effects such as fading [15], it can provide
fundamental insights and has been widely used in prior
literature [8].

To model interference given a storage configuration and user
requests we start with all potential D2D collaboration links.
Then, we construct the conflict graph as follows. We model
any possible D2D link between node u as transmitter to node
v as a receiver with a vertex u − v in the conflict graph. Then,
we draw an edge between any two vertices (links) that create
interference for each other according to the protocol model.
Figure 3 shows how the RGG in Figure 2 is converted to
the conflict graph. In Figure 2, receiver nodes are green and
transmitter nodes are yellow. The nodes that should receive
their desired files from the BS are gray. A set of D2D links is
called active if they are potentially active and can be scheduled
simultaneously, i.e., form an independent set in the conflict
graph. The random variable counting the number of active
D2D links under some policy is denoted by L.

Figure 3 shows the conflict graph and one of maximum
independent sets for the conflict graph. We can see that
out of 14 possible D2D links 9 links can co-exist without
interference. As is well known, determining the maximum
independent set of an arbitrary graph is computationally
intractable (NP complete [16]). Despite the difficulty of char-
acterizing the number of interference-free active links, we
can determine the best possible scaling law in our random
ensemble.

Fig. 3. Conflict graph based on Figure 2 and one of maximum independent
set of the conflict graph; pink vertices are those D2D links that can be activated
simultaneously.

III. PROBLEM FORMULATION

In this section we mathematically formulate the following
problem: for given popularity distribution, storage capacity
of 1 for each user and interference model, how should users
store files such that the average number of active links is
maximized?

We first maximizes the number of active D2D links given a
realization of requested and stored files, location of each user,
and collaboration distance r(n). Let σi be the file that user i
stores and ρi be the file that it requests. Similarly σ and ρ
are respectively the vector of files stored and requested by all
users. We denote the distance between users i and j and the
location of all users by di, j and D, respectively. User i can
transmit to user j via a D2D link if the distance between them
is less than r(n) and user i stores what user j requests, i.e.,
both indicator functions �{σi = ρ j } and �{di, j ≤ r(n)} should
be 1. However, to avoid interference, we need more conditions.
Let (i, j) be the D2D link when user i transmits to user j .
Links (i, j) and (l, k) cannot be activated simultaneously if
they can create interference for each other, that is, there is
an edge between (i, j) and (l, k) in the conflict graph, see
Section II. Thus, the maximum number of D2D links that can
co-exist given σ , ρ, D, and r(n) denoted by L(σ, ρ, D, r(n))
is the solution of the following optimization problem

max
n∑

i=1

n∑

j=1, j �=i

�{σi �= ρi }�{σi = ρ j }�{di, j ≤ r(n)}yi, j

s.t. �{σi = ρ j }�{di, j ≤ r(n)}yi, j +�{σl =ρk}
�{dl,k ≤r(n)}yl,k ≤1, if ((i, j), (l, k))∈ E,

yi, j ∈ {0, 1}, ∀i, j, i �= j

where the maximization is over yi, j for all i �= j and E is
the set of edges in the conflict graph. Note that we do not
consider yi,i in order to avoid counting self requests as D2D
links. Given that yi, j = 1, user i transmits to user j via D2D
communication. By the first set of conditions, we are sure that
all activated D2D links can co-exist. We note that the above
problem is equivalent to find the maximum independent set in
the conflict graph, which is NP-hard.

Given that users store files independently according to
distribution F , we wish to find the optimal collaboration
distance r(n) and caching distribution F to maximize the
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expected number of active D2D links. We assume that users
requests files randomly and independently according to a Zipf
distribution with exponent γr . We also assume that users
are uniformly distributed across the cell. The optimization
problem can be written as follows

maxr(n),F E [L(σ, ρ, D, r(n))]

where the expectation is with respect σ , ρ and D. To simplify
the problem, we assume that users store files independently
based on Zipf distribution with exponent γc. We have only
used Zipf distributions for caching to keep the parametrization
and presentation simple and analyses tractable. Then the above
optimization problem is simplified as

maxr(n),γr E [L(σ, ρ, D, r(n))]

where r(n) and γr are our decision variables. In the rest of
paper, for simplicity we denote E [L(σ, ρ, D, r(n))] by E[L].
Moreover, we find the optimal γc and r(n) that gives the best
scaling for the expected number of active D2D links, E[L].

IV. ANALYSIS

A. Finding the Optimal Collaboration Distance

We are interested in determining the best collaboration dis-
tance r(n) and caching policy such that the expected number
of active D2D links is maximized. Our optimization is based
on balancing the following tension: The smaller the transmit
power, the smaller the region in which a D2D communication
creates interference. Therefore, more D2D pairs can be packed
into the same area allowing higher frequency reuse. On the
other hand, a small transmit power might not be sufficient to
reach a device that stores the desired file. Smaller power means
smaller distance and hence smaller probability of collaboration
opportunities.

We analyze the case where the nodes do not possess power
control with fast adaptation, but rather all users have the same
transmit power that depends only on the node density. We then
show how to optimize it based on the content request statistics.
Our analysis involves finding the best compromise between the
number of possible parallel D2D links and the probability of
finding the requested content, as discussed above. Our results
consist of two parts. In the first part (upper bound), we find
the best achievable scaling for the expected number of active
D2D links. In the second part (achievability), we determine
an optimal caching policy and r(n) to obtain the best scaling
for the expected number of active links E[L].

The best achievable scaling for the expected number of
active D2D links depends on the extend of content reuse.
Larger Zipf distribution exponents correspond to more redun-
dancy in the user requests and a small number of files accounts
for the majority of video traffic. Thus, the probability of
finding requested files through D2D links increases by having
access to few popular files via neighbors.

We separate the problem into three different regions depend-
ing on the Zipf exponent: γr > 1, γr < 1, and γr = 1. For
each of these regions, we find the best achievable scaling for
E[L] and the optimum asymptotic r(n) denoted by ropt (n).
We also show that for γr > 1 and γr < 1 regions a simple
distributed caching policy has optimal scaling, i.e., matches
the scaling behavior that any centralized caching policy could

achieve. This caching policy means that each device stores
files randomly, with a properly chosen caching distribution,
namely a Zipf distribution with parameter γc. For γr = 1, we
present an optimal centralized caching policy.

Our first result is the following theorem:
Theorem 1: If the Zipf exponent γr > 1,
i) Upper bound: For any caching policy, E[L] = O(n),

ii) Achievability: Given that c1

√
1
n ≤ ropt (n) ≤ c2

√
1
n

3 and
using a Zipf caching distribution with exponent γc > 1
then E[L] = �(n).

The first part of the theorem 1 is trivial since the number of
active D2D links can at most scale linearly in the number of
users. The second part indicates that if we choose ropt (n) =
�(
√

1
n ) and γc > 1, E[L] can grow linearly with n. There is

some simple intuition behind this result: We show that in this
regime users are surrounded by a constant number of users in
expectation. If the Zipf exponent γc is greater than one, this
suffices to show that the probability that they can find their
desired files locally is a non-vanishing constant as n grows.
Our proof is provided in the Appendix V.

Note that for γr ≥ 1 the Zipf distribution assigns constant
probability to the most popular file. Thus, just by caching the
most popular file locally, each user can be satisfied from their
own cache with constant probability. Therefore, a number of
users that is linearly proportional to the total number of users
can find their desired file locally. However, as we empirically
show in our recent work [6], the proportionality constant for
this case is significantly smaller compared to what can be
achieved by exploiting neighboring caches.

For the low content reuse region γr < 1, we obtain the
following result:

Theorem 2: If γr < 1,
i) Upper bound: For any caching policy, E[L] = O( n

mη )

where η = 1−γr
2−γr

,

ii) Achievability: If c3

√
mη+ε

n ≤ ropt (n) ≤ c4

√
mη+ε

n and
users cache files randomly and independently according
to a Zipf distribution with exponent γc, for any exponent
η + ε, there exists γc such that E[L] = �( n

mη+ε ) where
0 < ε < 1

6 and γc is a solution to the following equation

(1 − γr )γc

1 − γr + γc
= η + ε.

Our proof is provided in Appendix V-F.
We show that when there is low content reuse, linear scaling

in frequency re-use is not possible. At a high level, in order
to achieve the optimal scaling, on average a user should be
surrounded by �(mη) users. Comparing with the first region
where γr > 1, we can conclude that when there is less
redundancy, users have to see more users in the neighborhood
to find their desired files locally.

Theorem 3: If γr = 1

i) Upper bound: For any r(n), E[L] = O( n log log(m))
log(m) )

ii) Achievability: Given that c5

√
log(m)

n log log(m) ≤
r(n) ≤ c6

√
log(m)

n log log(m) , there exists a centralized

3c and ci s are positive constants that do not depend on n.
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strategy such that

E[L] = �(
n log log(m)

log(m)
).

B. Concentration

In the section, we show that the number of active links L
concentrates tightly near its expectation with high probability.
Specifically, using a standard martingale concentration argu-
ment we can show that the deviations of L will be in the order
of

√
n log n with high probability.

Lemma 1: For any given n, with probability greater than
1 − 2

n , the number of active links is concentrated around its
mean, that is

Pr
[
|E[L] − L| ≥ √

12 n log(n)
]

≤ 2

n
Proof 1: For any given collaboration distance, the number

of active links is a function of the location of users (D),
stored (σ ) and requested files (ρ), that is L = L(σ, ρ, D).
In the following we show that function L(σ, ρ, D) is
2-Lipschitz.

A function f (X) = f (x1, x2, . . . , xn) is c−Lipschitz if for
any i and for any set of values x1, . . . , xn and yi ,

| f (X−i , xi ) − f (X−i , yi )| ≤ c

where X−i is all variables X except for variable i . Since every
user can at most construct one D2D link with its neighbors,
it is easy to verify that L(σ, ρ, D) is a 2-Lipschitz function.
To be more precise, by changing one of the variables, e.g.,
the location of a user i , the number of active D2D links can
change at most by 2.

By the Azuma-Hoeffding inequality, for any c-Lipschitz
function L and any λ > 0, we have

Pr[|L − E[L]| ≥ λc
√

t] ≤ 2 exp(−λ2/2)

where t is the total number of variables, namely t = 3n.
By setting λ and c to

√
2 log(n) and 2, respectively, we get

the desired result.
As an immediate corollary, we can see the the number of

active links is concentrated around its average if E[L] grows
faster than

√
n log(n). Thus, for γr > 1, we always observe

concentration. For γr < 1, L might be concentrated around
E[L] depending on the value of γr and how m scales with n,
see Theorem 2.

Corollary 1: The number of active links is concentrated
around its average if E[L] grows faster than

√
n log(n) that is

E[L] = �(
√

n log(n)).

V. DISCUSSION AND CONCLUSIONS

As mentioned in Sec. I, the study of scaling laws of the
capacity of wireless networks has received significant attention
since the pioneering work by Gupta and Kumar [8] (e.g. see
[9]–[11], [17], [18]). The first result was pessimistic: if n
nodes are trying to communicate (say by forming n/2 pairs),
since the typical distance in a 2D random network will involve
roughly �(

√
n) hops, the throughput per node must vanish,

approximately scaling as 1/
√

n. There are, of course, sophisti-
cated arguments performing rigorous analysis that sharpens the
bounds and numerous interesting model extensions. One that is

particularly relevant to this paper is the work by Grossglauser
and Tse [10] that showed that if the nodes have infinite
storage capacity, full mobility and there is no concern about
delay, constant (non-vanishing) throughput per node can be
sustained as the network scales. Researchers have investigated
the scaling laws for more generalized traffic patterns. Partic-
ularly, multicast communication which is a good fit for group
communications has been studied in [19] and [20].

Despite the significant amount of work on ad hoc networks,
there has been very little work on file sharing and content
distribution over wireless ([3], [21]) beyond the multiple
unicast traffic patters introduced in [8]. Our result shows
that if there is sufficient content reuse, caching fundamentally
changes the picture: non-vanishing throughput per node can be
achieved, even with constant storage and delay, and without
any mobility.

On a more technical note, the most surprising result is
perhaps the fact that in Theorem 2, a simple distributed policy
can match the optimal scaling behavior E[L] = O( n

mη ). This
means that even if it were possible for a central controller
to impose on the devices what to store, the scaling behavior
could not improve beyond the random caching policy (though,
of course, the actual numerical values for finite device density
could be different). Further, for both regimes of γr , the distrib-
uted caching policy exponent γc should not match the request
Zipf exponent γr , something that we found quite counter
intuitive.

Overall, even if linear frequency re-use is not possible, we
expect the scaling of the library m to be quite small (typically
logarithmic) in the number of users n. In this case we obtain
near-linear (up to logarithmic factors) growth in the number of
D2D links for the full spectrum of Zipf exponents. Our results
are encouraging and show that device-based caching and D2D
communications can lead to drastic increase of wireless video
throughput; and that the benefits increase as the number of
participants increases. This in turn implies that the highest
throughput gains are achieved in those areas where they are
most needed, i.e., where the devices are most concentrated.

As a final point we would like to emphasize that we consider
the number of D2D links as a metric. One can consider other
reasonable metrics such as total average rate and delay to
investigate the performance of D2D system. Characterizing
the scaling behavior of other metrics might be more involved
and remains as future work. Empirical work [6] confirms that
other metrics such as the total average rate behave well when
we optimize for E[L].

APPENDIX A
PROOF OF THEOREM 1

The first part of the theorem is easy to see since the number
of D2D links cannot exceed the number of users.

For the second part of the theorem, we introduce virtual
clusters and we show that the number of virtual clusters that
can be potentially active, called good clusters, scales like the
number of active links. To find the lower bound for good
clusters, we limit users to communicate with neighbors in
the same cluster. Then, we express the probability of good
cluster as function of stored files by users within the cluster.
Excluding self-requests, i.e., when users find their request files
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Fig. 4. (a) Dividing cell into virtual clusters. (b) In the worst case, a good
cluster can block at most 16 clusters. In the dashed circle, receiving is not
possible and in the solid circle, transmission is not allowed.

in their own caches, we find a lower bound for good clusters.
We further define a value for each cluster, which is the sum
of probabilities of files stored by users. Then we express the
probability of goodness as a function of value of clusters.
Using Chernoff bounds, we finalize our proof.

A. Active Links Versus Good Clusters

We divide the cell into 2
r(n)2 virtual square clusters. Figure 4

shows the virtual clusters in the cell. The cell side is normal-
ized to 1 and the side of each cluster is equal to r(n)√

2
. Thus,

all users within a cluster can communicate with each other.
Based on our interference model, in each cluster only one link
can be activated. When there is an active D2D link within a
cluster, we call the cluster good. But not all good clusters can
be activated simultaneously. According to the protocol model,
one good cluster can at most block 16 clusters (see Figure 4).
The maximum interference happens when a user in the corner
of a cluster transmits a file to a user in the opposite corner.
So, we have

E[L] ≥ E[G]
(16 + 1)

(2)

where E[G] is the expected number of good clusters.
Since the number of active links scales like the number of

good clusters, to prove the theorem it is enough to show that
constant fraction of virtual clusters are good. This is because

r(n) = �(
√

1
n ) and there are �(n) virtual clusters in the cell.

B. Limiting Users

Since we want to find the lower bound for E[L], we can
limit users to communicate with users in virtual clusters they
belong to. Hence,

E[G] ≥ 2
r(n)2

∑n
k=0 Pr[good|k] Pr[K = k], (3)

where 2
r(n)2 is the total number of virtual clusters. K is the

number of users in the cluster, which is a binomial random
variable with n trials and probability of r(n)2

2 , i.e., K =
B(n, r(n)2

2 ). Pr[K = k] is the probability that there are k users
in the cluster and Pr[good|k] is the probability that the cluster
is good conditioned on k.

C. Probability of Goodness and Stored Files

To show the result, we should prove that the summation
in (3), i.e., the probability that a cluster is good, does not
vanish as n goes to infinity. The probability that a cluster is
good depends on what users cache. Therefore,

E[G] ≥ 2

r(n)2

n∑

k=0

Pr[K = k]
∑

{
ω
∣
∣|ω|=k

}
Pr[good|k, ω] Pr[ω],

(4)

where ω is a random vector of files stored by users in the
cluster and |ω| denotes the length of vector ω. The i th element
of ω denoted by ωi ∈ {1, 2, 3, . . . , m} indicates what user i
in the cluster stores.

For each ω, we define a value:

v(ω) =
∑

i∈ω̃

fi , (5)

where ω̃ = ∪|ω|
j=1ω j and ∪ is the union operation. Actually

v(ω) is the sum of popularities of the union of files in ω. The
cluster is considered to be good if at least one user i in the
cluster requests one of the files in ω̃ − {ωi }.

D. Excluding Self Request

A user might find the file it requests in its own cache; in this
case clearly no D2D communication will be activated by this
user. We call these cased self-requests. Accounting for these
self-requests, the probability that user i finds its request files
locally within the cluster is (v(ω) − fωi ). Thus, we obtain:

Pr[good|k, ω] ≥ 1 − (
1 − (v(ω) − maxi fωi )

)k
. (6)

Let us only consider cases where at least one user in the cluster
caches file 1 (the most popular file). Then, from (4) and (6),
the following lower bound is achieved:

E[G] ≥ 2

r(n)2

n∑

k=1

Pr[K = k]

×
∑

ω∈x

[
1 − (1 − (v(ω) − f1))

k] Pr[ω]. (7)

where x = {
ω
∣
∣|ω| = k and 1 ∈ ω̃

}
.
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E. Probability of Goodness and Value of Clusters

Instead of taking expectation with respect to ω, we take
expectation with respect to v, i.e., the value of a cluster.
Then,

E[G] ≥ 2

r(n)2

n∑

k=1

Pr[K =k]Ev [1−(1−(v− f1))
k|Ak

1] Pr[Ak
1]

≥ 2

r(n)2

n∑

k=1

Pr[K = k]Ev [(v − f1)|Ak
1] Pr[Ak

1],

where Ak
1 is the event that at least one of k users in the cluster

caches file 1 and Ev [.] is the expectation with respect to v.
Let Ak

1,h for 1 ≤ h ≤ k denote the event that h users out of k
users in the cluster cache file 1. Then, we get:

E[G] ≥ 2

r(n)2

n∑

k=1

Pr[K = k]

×
k∑

h=1

Ev [(v − f1)|Ak
1,h] × Pr[Ak

1,h], (8)

where Pr[Ak
1,h] =

(
k
h

)

(p1)
h(1 − p1)

k−h and p j represents

the probability that file j is cached by a user based on a Zipf
distribution with exponent γc. To calculate Ev [(v − f1)|Ak

1,h],
we define an indicator function � j for each file j ≥ 2. � j
is equal to 1 if at least one user in the cluster stores file j .
Hence,

Ev [(v − f1)|Ak
1,h] = E

[ m∑

j=2

f j� j |Ak
1,h

]

=
m∑

j=2

f j (1 − (1 − p j )
k−h).

F. Chernoff Bound

To show that the probability of a cluster is good is not
vanishing, we use the Chernoff bound. First, we limit the
interval k to an interval around its average. By substituting
Ev [(v − f1)|Ak

1,h] in (8),

E[G] ≥ 2

r(n)2

∑

k∈I

Pr[K = k]

×
k∑

h=1

m∑

j=2

f j (1 − (1 − p j )
k−h) Pr[Ak

1,h], (9)

where for any 0 < δ < 1 the interval I = [nr(n)2

(1 − δ)/2, nr(n)2(1 + δ)/2]. Define k∗ ∈ I such that it
minimizes the expression in the last line of (9). Since r(n) =
�(
√

1
n ), k∗ is �(1). Then from (9), we have:

E[G] ≥ 2

r(n)2 Pr[K ∈ I ]

×
k∗
∑

h=1

[
Pr[Ak∗

1,h]
m∑

j=2

f j (1 − (1 − p j )
k∗−h)

]
(10)

≥ 2

r(n)2

(
1 − 2 exp

(
−nr(n)2δ2/6

))

×
k∗ p1(1+δ1)∑

h=k∗ p1(1−δ1)

[
Pr[Ak∗

1,h]
m∑

j=2

f j (1 − (1 − p j )
k∗−h)

]
,

(11)

where 0 < δ1 < 1. We apply the Chernoff bound in
(10) to derive (11) [22]. Since the exponent nr(n)2δ2/6 is
�(1), we can select the constant c1 such that the term
1 − 2 exp

(−nr(n)2δ2/6
)

becomes positive.
Let us define h∗ ∈ [k∗ p1(1 − δ1), k∗ p1(1 + δ1)] such that

it minimizes the inner summation of (11), i.e.,
∑m

j=2 f j (1 −
(1 − p j )

k∗−h). From (1), p1 is 1
H(γc,1,m) where function H is

defined in Lemma 2 in Appendix A. Lemma 2 implies that
p1 = �(1) and as a result, h∗ is also �(1). Using the Chernoff
bound for random variable h in (11), we get:

E[G] ≥ 2

r(n)2

(
1 − 2 exp

(
−nr(n)2δ2/6

))

×
(

1−2 exp
(
−k∗ p1δ

2
1/3
)) m∑

j=2

f j (1−(1− p j)
k∗−h∗

).

(12)

k∗ − h∗ should be greater than 1. In the following we show
that this condition will result in a lower bound for constant
c1. Since k∗ −h∗ should be greater than 1 even for the largest
value of h∗, we have

k∗ − k∗ p1(1 + δ1) > 1

k∗ >
1

1 − p1(1 + δ1)
= ζ(γc)

ζ(γc) − (1 + δ1)

where ζ(γ ) = ∑

j=1

1
jγ is the Riemann zeta function [23]. The

above equation should be true for the smallest value of k∗,
c2

1(1 − δ)/2, namely

c2
1

1 − δ

2
>

ζ(γc)

ζ(γc) − (1 + δ1)

c1 >

√
2ζ(γc)

(1 − δ) × (ζ(γc) − (1 + δ1))

In Equation 12, the second exponent, i.e., k∗ p1δ
2
1/3 is �(1).

Therefore, the term
(
1 − 2 exp

(−k∗ p1δ
2
1/3
))

is a positive
constant if c1 is large enough. One can easily verify that c1

should be greater than
√

6 ln(2)ζ(γc)

δ2
1 (1−δ)

to satisfy this condition.

Since k∗−h∗ is greater than 1, the summation in (12) satisfies
m∑

j=2

f j (1 − (1 − p j )
k∗−h∗

) >

m∑

j=2

f j p j .

To show that E[G] scales linearly with n, the term
∑m

j=2 f j p j
should not be vanishing as n goes to infinity. Using part (iv) of
lemma 2, we can see that if γr , γc > 1,

∑m
j=2 f j p j = �(1).

APPENDIX B
PROOF OF THEOREM 2

To show the first part of the theorem, we use virtual clusters.
We show that the number of active links can be at most equal



GOLREZAEI et al.: SCALING BEHAVIOR FOR D2D COMMUNICATIONS WITH DISTRIBUTED CACHING 4293

Fig. 5. Maximum area covered by all users within a cluster (blue square).

to the number of good clusters. We state the probability of
goodness as a function of stored files. To be more precise, we
express this probability as a intersection of some decreasing
events. Then, we use FKG inequality, to find an upper bound
for probability of goodness. Finally, we divide the whole range
of r(n) into four non overlapping regions and show the upper
bound for all regions.

A. Active Links Versus Good Clusters

To show the first part of the theorem, as in proof of the
theorem 1, we divide the cell into 2

r(n)2 virtual square clusters.
All users within a cluster can communicate with each other.
Based on the protocol model, in each cluster only one link can
be activated. A stated before, when there is an active D2D link
within a cluster, we call the cluster good. In the best case, all
the good clusters can be activated simultaneously. Hence,

E[L] ≤ E[G],
where E[G] is the average number of good clusters. All users
can look for their desired files not only in their own clusters
but in the caches of all users in their vicinities. The maximum
area that can be covered by all users in a cluster cannot be
larger than αr(n)2 where α � ( 1√

2
+ 2)2 (the area of dashed

square in Figure 5). Therefore,

E[L] ≤ 2

r(n)2

n∑

k=0

Pr[good|k]Pr [K = k], (13)

where K is the the number of users in dashed square
(called maximum square) in Figure 5 which is binomial
random variable with n trials and probability of αr(n)2,
K = B(n, αr(n)2).

B. Probability of Goodness and Stored Files

Pr[good|k] is the probability that a cluster is good condi-
tioned on k and it depends on what users in the maximum
square stores denoted by ω.

Pr[good|k] =
∑

{
ω
∣
∣|ω|=k

}
Pr[good|k, ω] Pr[ω]

Let us define an event Ai (ω) that user i finds its request either
in the cache of its neighbors or its own cache.

Pr[good|k, ω] ≤ Pr[A1(ω) ∪ A2(ω) ∪ . . . ∪ Ak(ω)]
= 1 − Pr[ Ā1(ω) ∩ Ā2(ω) ∩ . . . ∩ Āk(ω)] (14)

Events Ai (ω) and A j (ω) for j �= i are dependent since they
both depend on ω. The probability that event Ai (ω) happens
is:

Pr[Ai(ω)] =
m∑

j=1

f j� j ,

where f j is the probability that user i requests file j . � j is
an indicator function for file j and it is one if file j ∈ ω. It is
easy to check that v(ω) in (5) is equal to Pr[Ai(ω)] for any i .

C. Increasing Events and FKG Inequality

To find an upper bound for the intersection of dependent
events Āi (ω)s in (14), we first show that they are decreasing
events. Then, we use the FKG inequality for decreasing
events [24].

Definition 1: (Increasing event). A random variable X is
increasing on (�, F) if X (ω) ≤ X (ω′) whenever ω ≤ ω′.
It is decreasing if −X is increasing.

We assume that ω ≤ ω′ if the value of ω is less than the
value of ω′, i.e.,

v(ω) ≤ v(ω′).

where the value of ω is defined in (5). Thus, according
to this definition, event Ai (ω) for any 1 ≤ i ≤ k is an
increasing event. Applying the FKG inequality for correlated
and decreasing events Āi (ω)s [24]:

Pr[ Ā1(ω) ∩ Ā2(ω) ∩ . . . ∩ Āk(ω)] ≥ Pr[( Ā1(ω)]k . (15)

From (14) and (15), we obtain:

Pr[good|k, ω] ≤ 1 − Pr[( Ā1(ω)]k (16)

≤ 1 − (1 −
k∑

j=1

f j )
k . (17)

To derive (17), we used the fact that the probability of event
A1(ω) is maximized if the k most popular files is in ω. The
obtained upper bound in (17) does not depend on ω. Hence,

Pr[good|k] ≤ 1 − (1 −
k∑

j=1

f j )
k . (18)

In the following, we will consider four non overlapping regions
for r(n) and for each region, we will prove the first part of
the theorem.

D. First Region

We first consider the region r(n) = O(
√

1
n ). From

(13) and (18),

E[L] ≤ 2

r(n)2

n∑

k=0

[
1 − (1 −

k∑

j=1

f j )
k]Pr[K = k] (19a)
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≤ 2

r(n)2

n∑

k=1

k Pr[K = k]
k∑

j=1

f j . (19b)

Using part (iii) of lemma 2, the second summation
∑k

j=1 f j ≤
2 k1−γr

m1−γr . Thus,

E[L] ≤ 4

r(n)2

n∑

k=0

k2−γr

m1−γr
Pr[K = k]

≤ 4

r(n)2m1−γr

n∑

k=0

k2 Pr[K = k]

= 4

r(n)2m1−γr
E[K 2].

For the Binomial random variable K = B(n, αr(n)2),

E[K 2] = (αnr(n)2)2 + αnr(n)2(1 − αr(n)2)

Therefore,

E[L] ≤ 4

r(n)2m1−γr

(
(αnr(n)2)2 + αnr(n)2(1 − αr(n)2)

)

= 4n

m1−γr

(
α2nr(n)2 + α(1 − αr(n)2)

)

= c
n

m1−γr
.

where c is some constant.

E. Second Region

Then, we consider the region that r(n) = �(
√

1
n ), and

r(n) = O(
√

log(m)
n ). Equation (19a) implies:

E[L] ≤ 2

r(n)2

∑

0≤k<k0

[1 − (1 −
k∑

j=1

f j )
k] Pr[K = k]

+ 2

r(n)2

∑

k≥k0

[1 − (1 −
k∑

j=1

f j )
k] Pr[K = k]. (21)

Assuming that r(n) ≤
√

c log(m)
n , we choose k0 = 6αc log(m)

where c is some constant. Note [1 − (1 − ∑k
j=1 f j )

k] is an
increasing function of k and it is less than or equal to 1.
Therefore, (21) implies,

E[L] ≤ 2

r(n)2 [1 − (1 −
k0∑

j=1

f j )
k0 ] Pr[K < k0]

+ 2

r(n)2 Pr[K ≥ k0], (22)

≤ 2

r(n)2 [k0

k0∑

j=1

f j ] Pr[K <k0]+ 2

r(n)2 Pr[K ≥k0] (23)

≤ 4

r(n)2

[k0
2−γr

m1−γr

]
Pr[K <k0]+ 2

r(n)2 Pr[K ≥k0] (24)

We use part (iii) of lemma 2 to derive the last equation. For
the binomial random variable K and for any R ≥ 6E[K ], the
Chernoff bound holds [22]:

Pr[K ≥ R] ≤ 2−R . (25)

Applying the Chernoff bound and substituting k0 in (24), we
acquire:

E[L] ≤ 4

r(n)2

(6αc log(m))2−γ

m1−γ

+ 2

r(n)2 2−6αc log(m)

= 4(6αc)2−γ 1

r(n)2

(log(m))2−γ

m1−γ
+ 1

r(n)2

2

m6αc log 2 .

(26)

The function f (x) = log(x)
xβ is always less than 1

β where β > 0.

Thus, log(m) ≤ mη2

η2 .

E[L] ≤ 4(6αc)2−γ 1

r(n)2

(
mη2

η2

)2−γ
1

m1−γ
+ 2n

mη

= 4(6αc)2−γ

η4−2γ

1

r(n)2mη
+ 2n

mη
= �(

n

mη
) (27)

F. Third and Fourth Regions

For the third region, r(n) = �(
√

log(m)
n ) and r(n) =

O(
√

1
n ). To show the upper bound for E[L] in this region, we

follow a similar procedure as in the second region by setting

k0 = 6αnr(n)2. For the last region r(n) = �(
√

mη

n ), the total

number of all virtual clusters 2
r(n)2 = O( n

mη ). Thus, for this
range of r(n), E[L] = O( n

mη ).

In the following, we will show the second part of the
theorem. Similar to proof of the theorem 1, we relate the
number of good clusters and active links. We restrict users to
communicate with their neighbors in their clusters. We further
limit users not to get certain files from their neighbors although
some neighbors might store these files. In this case the value
of a cluster is the sum of probabilities of stored files that
users can get via their neighbors. By the restriction on files
the value of cluster becomes concentrated around its mean.
We also consider self requests in finding the lower bound.
Applying Chernoff bound and Azuma inequality we show that
the probability of goodness is not vanishing when a user is
surrounded on average by πnropt (n)2 neighbors from which
the result follows.

Define η1 � η + ε = (1−γr )γc
1−γr +γc

. We should show that if we

choose r(n) = �(
√

mη1

n ), the probability that a virtual cluster
is good does not vanish as n grows.

When r(n) = �(
√

mη1

n ), there are �( n
mη1 ) virtual clusters.

The number of active D2D links is upper bounded by the
number of virtual clusters. Thus, E[L] = O( n

mη1 ). Then, we

show that for c3

√
mη1

n ≤ r(n) ≤ c4

√
mη1

n , E[L] = �( n
mη1 ).

To do this, we follow a similar procedure as in theorem 1.
We divide the cell into virtual clusters and we allow each
user to look for its desired file just within its cluster. As
mentioned before, each cluster can block at most 16 other
clusters (Figure 4).
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G. Limiting Users and Excluding Self Request

To find the lower bound, we even more restrict users. We
assume that users can not get files {1, 2, . . . , q − 1} locally
even if there are users in the cluster that cache these files
where q = m

η1
γc . So, caching files {1, 2, . . . , q − 1} doesn’t

have any value for any user in the cluster.
E[L] is lower bounded by the expression in (2) where the

lower bound for E[G] is given in (4). Similar to (6), we
exclude the self requests. Thus, the probability that a cluster
is good conditioned on k and ω is

Pr[good|k, ω] ≥ 1 −
(

1 −
(

v(ω) − max
i∈{q,...,m} fωi

))k

(28)

where v(ω) = ∑m
j=q f j� j and � j is an indicator function.

� j is one if at least one user in the virtual cluster stores file
j . We limit ourselves to all cases in which at least one user
caches file q . Hence,

Pr[good|k, ω] ≥ 1 − (
1 − (

v(ω) − fq
))k (29)

H. Chernoff Bound

As in the proof of theorem 1, we first limit the interval of
k and then we use the Chernoff bound.

By restricting k to an interval around its average, i.e.,
I = [nr(n)2(1 − δ)/2, nr(n)2(1 + δ)/2] where 0 < δ <
1 and applying (29) in (4), the following lower-bound is
obtained:

E[G] ≥ 2

r(n)2

∑

k∈I

Pr [K = k]

×
∑

ω∈x

[
1 − (1 − (v(ω) − fq ))k] Pr[ω], (30)

where x = {
ω
∣
∣|ω| = k and q ∈ ω

}
.

Let k∗ be

k∗ � arg min
k∈I

∑

ω∈x

[
1 − (1 − (v(ω) − fq ))k] Pr[ω]

Notice that k∗ and also all k ∈ I are �(mη1). Then,

E[G] ≥ 2

r(n)2 Pr[K ∈ I ]

×
∑

ω∈x

1 − (1 − (v(ω) − fq ))k∗
Pr[ω]

≥ 2

r(n)2

(
1 − 2 exp

(
−nr(n)2δ2/6

))

×
∑

ω∈x

[
1 − (1 − (v(ω) − fq))k∗]

Pr[ω]. (31)

We use the Chernoff bound in (31). Let Ak
q,h denote the event

that 1 ≤ h ≤ k users cache file q . Then, we can rewrite the
above lower-bound as follows:

E[G] ≥ 2

r(n)2

(
1 − 2 exp

(
−nr(n)2δ2/6

))

×
k∗
∑

h=1

Ev [1 − (1 − (v − fq ))k∗ |Ak∗
q,h] Pr[Ak∗

q,h]

≥ 2

r(n)2

(
1 − 2 exp

(
−nr(n)2δ2/6

))

×
k∗ pq (1+δ1)∑

h=k∗ pq (1−δ1)

Ev [1−(1−(v− fq))
k∗ |Ak∗

q,h] Pr[Ak∗
q,h]

(32)

where Pr[Ak∗
q,h] =

(
k∗
h

)

(pq)h
(
1 − pq

)k∗−h
, k∗ pq is the

average of binomial random variable h and 0 < δ1 < 1.
Define h∗ as

h∗ � arg min
k∗ pq (1−δ1)≤h≤k∗ pq (1+δ1)

Ev [1 − (1 − (v − fq ))k∗ |Ak
q,h] (33)

Using Chernoff bound for binomial random variable h, we
obtain:

E[G] ≥ 2

r(n)2

(
1 − 2 exp

(
−nr(n)2δ2/6

))

×
(

1 − 2 exp
(

k∗ pqδ2
1/3
))

Ev [1−(1−(v− fq))
k∗ |Ak∗

q,h∗ ]
(34)

The probability that a user caches file q is:

pq =
1

qγc
∑m

j=1
1

jγc

= �( 1
mη1 )

H (γc, 1, m)
(35)

where function H is defined in lemma 2. We show in lemma 2
that H (γc, 1, m) = �(1) given that γc > 1. Thus, all
h ∈ [k∗ pq(1 − δ1), k∗ pq(1 + δ1)] are �(1). By selecting
the constant c3 large enough, the second exponential term(
1 − 2 exp

(−k∗ pqδ2
1/3
))

will be greater than zero.

I. Probability of Goodness Is Not Vanishing

To complete the proof, it is enough to show that the proba-
bility that a cluster is good, i.e., Ev [1−(1−(v − fq))k∗ |Ak∗

q,h∗]
given in (34) does not vanish

Ev [1 − (1 − (v − fq ))k∗ |Ak∗
q,h∗]

≥
∫

|v−Ev [v |Ak∗
q,h∗ ]|<t

(1−(1−(v− fq))
k∗

) f
v |Ak∗

q,h∗ (v)dv (36)

where f
v |Ak∗

q,h∗ (v) is a probability distribution function of value

v conditioned on Ak∗
q,h∗ and 0 < t < Ev [v|Ak∗

q,h∗ ]. The average

of v conditioned on Ak∗
q,h∗ is given by:

Ev [v|Ak∗
q,h∗ ] = fq +

m∑

j=q+1

f j (1 − (1 − p j )
k∗−h∗

) (37)

From equation (36) and since (1 − (1 − (v − fq ))k∗
) is an

increasing function of v,

Ev [1 − (1 − (v − fq))k∗ |Ak∗
q,h∗ ]

≥
(

1 − (
1 − (

(
Ev [v|Aq,h∗ ] − t

)− fq )
)k∗)

× Pr
[|v − Ev [v|Ak∗

q,h∗ ]| < t
]

(38a)

≥ 1 − exp(−k∗(Ev [v|Ak∗
q,h∗ ] − t − fq))

× Pr
[|v − E[v|Ak∗

q,h∗ ]| < t
]

(38b)
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We show in lemma 3, Ev [v|Ak∗
q,h∗ ] = �( 1

mη1 ). Thus,

k∗Ev [v|Ak∗
q,h∗ ] = �(1). Furthermore, (36) implies

t = O(Ev [v|Ak∗
q,h∗ ]) = O(

1

mη1
).

Similar to (35), we can show that fq = �( 1
mη2 ) =

O(Ev [v|Ak∗
q,h∗ ]) where η2 = (1−γr )(1+γc)

1−γr +γc
. Thus, the exponent

in the first term of (38b) is �(1). To prove the result, it is
enough to show the second term in (38b) does not approach
zero as n grows. By applying the Azuma Hoeffding inequality
in lemma 4,

Pr
[|v − Ev [v|Ak∗

q,h∗ ]| ≤ t
] ≥ 1 − 2 exp

(− 2t2

(k∗ − h∗)( fq)2

)

(39)

Due to the fact that k∗ = �(mη1) and h∗ = �(1), the term
k∗ − h∗ = �(mη1). If we select t = �( 1

mη1 ), we can observe

that the exponent 2t2

(k∗−h∗)( fq )2 scales with mη2(2−γc). Hence,
if γc < 2, the exponent goes to infinity as n grows. γc < 2
implies that ε < 1

6 . This means that v is concentrated around
its average with high probability if ε ≤ 1

6 and as a result, the
second term in (38b) is a positive constant when n goes to
infinity.

APPENDIX C
PROOF OF THEOREM 3

The proof of the first part of the theorem is similar to
the proof of the theorem 2. E[L] is upper bounded by the
expression in (19a). Next, we consider three non-overlapping
regions for r(n) and we show the upper bound is valid for
every r(n).

A. First Region

First, we assume r(n) = O(

√
log log(m)

n ). Eqation (19b) and
part (v) of lemma 2 imply,

E[L] ≤ 2

r(n)2

n∑

k=0

log(k) + 1

log(m)
Pr[K = k] (40a)

≤ 2

r(n)2 log(m)

n∑

k=0

k2 Pr[K = k] (40b)

= 2

r(n)2 log(m)
E[K 2] (40c)

≤ 2

r(n)2 log(m)

[
(αnr(n)2)2 + αnr(n)2] (40d)

= 2n

log(m)

[
α2nr(n)2 + α

]
(40e)

≤ 2cn

log(m)
(α2 log log(m) + α) (40f)

= �(
n log log(m)

log(m)
) (40g)

To derive (40f), we use the range of r(n).

B. Second and Third Regions

Let us consider the second region for r(n). In this region

r(n) = �(

√
log log(m)

n ) and r(n) = O(

√
log(m)

n ). From (19a),

E[L] ≤ 2

r(n)2

6αnr(n)2
∑

k=0

[1 − (1 −
k∑

j=1

f j )
k] Pr[K = k]

+ 2

r(n)2

n∑

k=6αnr(n)2

[1−(1−
k∑

j=1

f j )
k] Pr[K = k] (41)

where α is defined in theorem 2. The term [1−(1−∑k
j=1 f j )

k]
is an increasing function of k, thus,

E[L] ≤ 2

r(n)2

⎡

⎢
⎣1 −

⎛

⎝1 −
6αnr(n)2
∑

j=1

f j

⎞

⎠

6αnr(n)2⎤

⎥
⎦

+ 2

r(n)2 Pr[K > 6αnr(n)2] (42a)

≤ 2

r(n)2 6αnr(n)2
6αnr(n)2
∑

j=1

f j + 2

r(n)2 2−6αnr(n)2
(42b)

In (42b), we applied the Chernoff bound [22]. From lemma 2
and the range of r(n), we obtain

E[L] ≤ 12αn
log(6αnr(n)2) + 1

log(m)
+ 2

r(n)2 2−6αnr(n)2

≤ 12αn
log(6αc7 log(m)) + 1

log(m)

+ 2n

c8 log log(m)
2−6αc8 log log(m)

= �(
n log log(m)

log(m)
) + 2n

c8 log log(m)
× 1

log(m)6αc8 log(2)

= �(
n log log(m)

log(m)
).

For the last region, i.e., r(n) = �(

√
log(m)

n ), the total
number of virtual clusters is O( n

log(m) ) and as a result,

E[L] = O( n
log(m) ) = O( n log log(m)

log(m) ).
In the following, we will show the second part of the

theorem. We propose a centralized algorithm that can match
the upper bound. The BS divides the cell into virtual cluster of

size r(n) = �(
√

log(m)
n log log(m) ). Given that there are k users in a

cluster, each of them should cache one of the k most popular
files. We show that under this caching policy, we can match the
upper bound. To find the lower bound, we assume that users
can just find their desired files just within clusters they belong
to. The lower bound for E[L] and E[G] are respectively given
in (2) and (3). Limiting the range of k results in

E[G] ≥ 2

r(n)2

∑

k∈I

Pr[good|k] Pr[K = k], (43)

where I = [nr(n)2(1 − δ)/2, nr(n)2(1 − δ)/2]. Under this
centralized caching policy the value of stored files within a
cluster with k users is v(k) = ∑k

j=1 f j . The cluster is good
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if at least one user within a cluster requests one of the k most
popular files not stored in its own cache

Pr[good|k] ≥ 1 − (1 − (v(ω) − f1))
k

= 1 −
⎛

⎝1 −
k∑

j=2

f j

⎞

⎠

k

≥ 1 − exp

⎛

⎝−k
k∑

j=2

f j

⎞

⎠

≥ 1 − exp

(

−k (log(k) − 1)

log(m) + 1

)

(44)

In the last equation we used lemma 2. The expression in (44)
is an increasing function of k. Thus, (44) and (43) imply

E[G] ≥
(

1−exp

(

−kmin (log(kmin)−1)

log(m) + 1

))

Pr[K ∈ I ] (45)

≥
(

1 − exp
(− c

kmin log(kmin)

log(m)

))

×
(

1 − 2 exp

(

−nr(n)2 δ2

6

))

(46)

where kmin = nr(n)2(1 − δ)/2 = �( log(m)
log log(m) ). We use the

Chernoff bound to derive (46). As n grows, the second term
in (46) goes to 1. It can be seen that the first term in (46) is also
�(1). Thus, E[G] and consequently E[L] are �( n log log(m)

log m ).

APPENDIX D
SOME PRELIMINARY LEMMAS

Lemma 2: i) If γ > 1 and a = o(b), H (γ, a, b) =
�( 1

aγ−1 ).
ii) If γ < 1, a = o(b), and a = �(1), H (γ, a, b) =

�(b1−γ ).
iii) if γr < 1,

∑k
j=1 f j ≤ 2 k1−γr

m1−γr .
iv) If γc, γr > 1,

∑m
i=2 fi pi = �(1).

v) if γ = 1,
∑k

j=l f j ≤ log(k)+1
log(m) and

∑k
j=2 f j ≥ log(k)−1

log(m)+1 .

where H (γ, a, b) =
b∑

j=a

1
iγ ,

pi =
1

iγc

m∑

j=1

1
jγc

, 1 ≤ i ≤ m. (47)

and fi is defined in (1).
Proof 2: We first prove the parts (i) and (ii) of the lemma.

1
xγ is monotonically decreasing. Thus,

H (γ,a, b) ≥
b∫

x=a

1

xγ
= b(−γ+1) − a−γ+1

−γ + 1
(48)

We also have the following inequality:

H (γ,a, b)− 1

aγ
=

b∑

j=a+1

1

jγ
≤

b∫

x=a

1

xγ
= b(−γ+1)−a(−γ+1)

−γ +1

(49)

Thus, H (γ, a, b) satisfies:

b(−γ+1)−a−γ+1

−γ + 1
≤ H (γ, a, b)≤ b(−γ+1)−a−γ+1

−γ + 1
+ 1

aγ
(50)

Therefore, if γ > 1, H (γ, a, b) = �( 1
aγ−1 ). Besides, if γ < 1

and a = �(1), then H (γ, a, b) = �(b1−γ ).
For part (iii), using (48) and (49), we have

k∑

j=1

f j = H (γr , 1, k)

Hγr, 1, m
≤ k(1−γr ) − γr

m(1−γr ) − 1
≤ 2

k(1−γr )

m(1−γr )
.

Next we show part (iv). From (1), we have:

m∑

j=2

f j p j =
∑m

j=2
1

jγr +γc
∑m

j=1
1

jγr

∑m
j=1

1
γc

= H (γc + γr , 2, m)

H (γc, 1, m)H (γr, 1, m)

(51)

When γc, γr > 1, both the nominator and the dominator of∑m
j=2 f j p j are �(1), from which (iv) follows.
Since the proof of the part (v) is similar to parts (i) and (ii),

we omit it.
Lemma 3: If γc > 1, γr < 1, k = �(mη1), and h = �(1)

Ev [v|Ak
q,h] = �(

1

mη1
)

where η1 = γc(1−γr )
1−γr +γc

, q = m
η1
γc , and Ev [v|Ak

q,h] is defined
in (37).

Proof 3: For the lower-bound, we have:

Ev [v|Ak
q,h] = fq +

m∑

j=q

f j (1 − (1 − p j )
k−h)

≥
m∑

j=q

f j (1 − e−k′ p j ) (52)

where k ′ = k − h = �(mη1). Using the Taylor series, we
obtain:

Ev [v|Ak
q,h] ≥

m∑

j=q

f j k
′ p j + f j

1

2! (k
′ p j )

2+ f j
1

3! (k
′ p j )

3 + . . .

= k ′ H (γc + γr , q, m)

H (γr , 1, m)H (γc, 1, m)

+ 1

2!k ′2 H (2γc + γr , q, m)

H (γr , 1, m)H (γc, 1, m)2

+ 1

3!k ′3 H (3γc + γr , q, m)

H (γr , 1, m)H (γc, 1, m)3 + . . . (53)

Parts (i) and (ii) of lemma 2 imply that all terms in the above
equation are �( 1

mη1 ).
For showing the upper bound,

Ev [v|Ak
q,h] = fq +

m∑

j=q+1

f j (1 − (1 − p j )
k)≤ fq +k

m∑

j=q

f j p j

≤ 1

qγr H (γr , 1, m)
+k

H (γc + γr , q, m)

H (γr, 1, m)H (γc, 1, m)
(54)

If we apply the results of lemma 2, we can show that
Ev [v|Ak

q,h] is O( 1
mη1 ).

Lemma 4: For t < Ev [v|Ak
q,h],

Pr
[|v−Ev[v|Ak

q,h]| ≤ t
] ≥ 1−2 exp

(− 2t2

(k − h)( fq )2

)
(55)
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Proof 4: Function v : {1, 2, . . . , m}k → R is equal to

v(ω1, ω2, . . . , ωk) =
∑

i∈ω̃∩Q

fi

where ω j is the file that user j stores, ω̃ = ∪k
j=1ω j and

Q = {q, q + 1, . . . , m}. v is the sum of popularity of the
union of files stored by users when only files in set Q are
considered to be valuable. By replacing the i th coordinate ωi
by some other value the value of v can change at most by fq ,
i.e.,

sup
ω1,...,ωk ,ω̂i

|v(ω1, . . . , ωk) − v(ω1, . . . , ω̂i , ωi+1 . . . , ωk)| ≤ fq

Using Azuma-Hoefding inequality [25],

Pr
[|v − Ev [v|Ak

q,h]| ≥ t
] ≤ 2 exp

(− 2t2

(k − h)( fq )2

)
(56)

the result follows.
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