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Abstract—In the real-world environments, multipath compo-
nents (MPCs) of wireless channels are generally distributed as
groups, i.e., clusters. Modeling the clustered MPCs is important
and necessary for channel modeling and an automatic clustering
algorithm is thus required. This paper proposes a novel Kernel-
power-density (KPD) based algorithm for MPC clustering. It
uses the Kernel density to incorporate the modeled behavior
of MPCs and takes into account the power of the MPCs. The
proposed algorithm only considers the K nearest MPCs in the
density estimation to better identify the local density variations
of MPCs. Simulations validate the KPD algorithm and almost
no performance degradation is found even with a large number
of clusters and large cluster angular spread. The KPD algorithm
enables applications with no prior knowledge about the clusters
such as number and initial locations. It can be used for the cluster
based channel modeling for 4G/5G communications.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems have been
widely used to increase data rates and improving quality of
wireless transmission [1]. Realistic channel models are needed
in MIMO system design such as transceiver designs and per-
formance analysis [2]-[7]. Recently, clustered based channel
modeling has been an important trend in the development of
MIMO channels, as it has maintains accuracy while reducing
complexity. A large body of channel measurements [8] has
also validated that the multipath components (MPCs) are
generally distributed in groups, i.e., clustered, in the real-world
environments. Therefore, the cluster based channel models
have been widely adopted in standardized channel models,
such as COST 259 [9] and 3GPP Spatial Channel Model [10].
Modeling the clustered MPCs is thus important and necessary
for channel modeling.

Even though the concept of clustered MPCs is widely
accepted in channel modeling, finding good clustering algo-
rithms is very much an open and research-active topic. Several
clustering algorithms have been proposed over the past few
years. In [11], MPCs are clustered within delay domain by
using region competition algorithm. In [12], [13], a sparsity-
based method is proposed to cluster MPCs, which exploits
the feature that the power of the MPCs is exponentially
decreasing with increasing delay. In [14], the K-Power-Means
(KPM) algorithm is proposed. It considers the impact of MPC

power in computing the cluster centers. In [15], the Fuzzy-
c-means algorithm is used to cluster MPC and is found to
outperform the KPM when using random initialization. In [16],
a hierarchical agglomerative clustering algorithm is used to
search for clusters jointly in the delay-angle-space domain.

Despite the impressive progress made in automated clus-
tering, the existing works have several limitations: i) the
attributes of MPCs are not well incorporated into the clus-
tering algorithm, and ii) the number of clusters and many
user-specified parameters are usually required. In general,
an algorithm with fewer user-specified parameters and easier
adjustment is needed for MPC clustering. In this paper, a
novel clustering framework is proposed by using a density
based method. A Kernel density is introduced to incorporate
the modeled behavior of MPCs, and the proposed algorithm
requires no prior knowledge of the number of clusters. This
paper only presents the main idea of clustering algorithm and
more analysis and detailed validations are presented in the
extended version of [17].

The rest of the paper is organized as follows. Section II
describes the wireless propagation channels. Section III shows
the framework of the proposed clustering algorithm. Section
IV validates the algorithm using simulations. Finally, Section
V concludes the paper.

II. CHANNEL DESCRIPTION

We consider the double-directional channel model [18] in
this paper, which contains the information of power «, delay
7, direction of departure (DOD) €)p, and direction of arrival
(DOA) Qp of the MPCs. For each snapshot, the double-
directional channel impulse response h can be expressed
as (1), where M is the number of cluster and N, is the
number of MPCs in the m-th cluster. o, ,, and ¢, , are the
amplitude gain and phase of the n-th MPC in the m-th cluster,
respectively. 7o, {7, and Qg ,,, are the arrival time, DOD,
and DOA of the m-th cluster, respectively. 7., n, 7,m,n, and
QR m,» are the excess delay, excess DOD, and excess DOA of
the n-th MPC in the m-th cluster, respectively, where excess
delay is usually taken with respect to the first component in
the cluster, while excess angles are taken with respect to the
mean. d(-) is the Dirac delta function and ¢ is time.
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All the multipath parameters in (1) can be estimated by
using high-resolution algorithms. Therefore, the clustering
analysis can be applied to the extracted MPCs. In this paper,
the set of all the MPCs for one snapshot is noted as ¢ and
each MPC is represented as x.

III. CLUSTERING ALGORITHM

A Kernel-power-density (KPD) based algorithm for MPC
clustering is proposed in this section. The KPD is a density-
based clustering algorithm, it uses the Kernel density and only
considers the neighboring points when computing the density.
The steps of KPD are presented as follows:

(1) Calculating Density: For each MPC sample, say =z,
calculate the density p using the K nearest MPCs as in (2),
where y is an arbitrary MPC that y # x. K, is the set of
the K nearest MPCs for the MPC . o) yex, is the standard
deviation of the K nearest MPCs in the domain of (-). In (2),
we use the Gaussian Kernel density for the delay domain as
the physical channels does not favor a certain distribution of
delay; we use the Laplacian Kernel density for the angular
domain as it has been widely observed that the angle of MPC
follows the Laplacian distribution [19]. The heuristical term
of exp(a) in (2) shows that MPCs with strong power increase
the density, which is intuitive.

(2) Calculating Relative Density: For each MPC sample,
calculate the relative density p* using the K nearest MPCs’
density, as follows:
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By using the relative density, we normalize the density over

different regions, which ensures that different clusters have

similar level of density. It can be seen from (3) that p* € (0, 1].

(3) Searching Key MPCs: For each MPC z, if p} = 1, label

it as the key MPC . We thus obtain the set of key MPCs as
follows:

= {z|lzed,pi=1} . 4)

The key MPCs can be considered as the initial cluster cen-
troids.

(4) Clustering: For each MPC z, define its high-density-
neighboring [20] MPC 2 as:

Z:= argmin {d(z,y)} 5)
yeEL,py>p3

where d represents the Euclidean distance. Similar to the idea
of density-reachable in [21], we connect each MPC to its

high-density-neighboring MPC and the connectedness path is
defined as

pri={zx — 2} . (6)
We thus obtain a connectedness map, (7, as follows:
C1 = {pz|x € @} . (7

Note that two MPCs can be connected to each other over mul-
tiple paths. Those MPCs which are connected and reachable
to the same key MPC in (; are grouped as one cluster.

(5) Cluster Merging: For each MPC, connect it to its K
nearest MPCs and the connectedness path is defined as

qz ‘= {CC—H/,yEKI} . (8)

We thus obtain another connectedness map, (o, as follows:
G = {q]r € @} . )

If i) two key MPCs are reachable in (5 and ii) any MPC in
any path connecting the two key MPCs has p* > x, where x
is a density threshold, we merge the two key MPCs’ clusters
as one new cluster.

In the above KPD algorithm, K determines how many
MPCs are used to calculate density. A small K reduces the
size of local region and we use K = /T'/2 as suggested in
[22]; x determines whether two clusters can be merged. A
large x leads to a large number of clusters. For simplicity, we
suggest to set x = 0.8, which is found to have a reasonable
performance as reported in Section IV. Detailed analysis of
parameter selection can be found in the extended version of
this work in [17], where further algorithm validations with
simulations and measurements are presented.

I'V. VALIDATION

To validate the KPD algorithm, we use a simulated channel
based on the 3GPP Spatial Channel Model Extended (SCME)
MIMO channel model [23] where the ground truth is available
. The F measure [24] is used to evaluate the clustering
performance, which is a robust external quality measure that
can be used to balance the precision and recall. The value of
the F measure ranges from O to 1, and a larger value indicates
higher clustering quality.

Fig. 1 and Fig. 2 show the details of KPD implementations.
In Fig. 1, 5 clusters are generated and cluster 3 is close to
cluster 4. As shown in Fig. 1(b), the estimated density p has
a large dynamic range and it is difficult to identify cluster 1

'We disregard the elevation domain in simulation for simplicity.
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Tlustration of KPD clustering using the simulation with 5 clusters.
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(a) Simulated 5 clusters of MPCs. (b) Plots of the estimated density p, where

the color bar indicates the level of p. (c) Plots of the estimated density p*, where the color bar indicates the level of p*. The solid black points are the key
MPCs with p* = 1. (d) Clustering results with the KPD algorithm, where the clusters are plotted with different colors.
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Tlustration of KPD clustering using the simulation with 7 clusters. (a) Simulated 7 clusters of MPCs. (b) Plots of the estimated density p, where

the color bar indicates the level of p. (c) Plots of the estimated density p*, where the color bar indicates the level of p*. The solid black points are the key
MPCs with p* = 1. (d) Clustering results with the KPD algorithm, where the clusters are plotted with different colors.

and cluster 3 by setting a density threshold. However, after
calculating the relative density (i.e., normalizing the local
density), it is easier to identify each cluster by using the key
MPCs, as shown in Fig. 1(c). The final clustering result in Fig.
1(d) has 100% correct identification. In Fig. 2, 7 clusters are
generated and clusters 4-7 are close to each other. As shown

in Fig. 2(b) and Fig. 2(c), the local density variations can
be better observed by using the relative density. With KPD
algorithm, all the 7 clusters are successfully identified in Fig.
2(d). Note that the step of clustering merging does not occur
in the simulated channels of Fig. 1 and Fig. 2, however, this
step is necessary to guarantee that an acceptable performance
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Clustering algorithm validation with simulated channels with 4 clusters. (a) Simulated MPCs with SCME channel model, where the raw clusters are

plotted with different colors. (b) Clustering results with the proposed KPD algorithm. (c) Clustering results with the KPM algorithm.
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Fig. 4. Clustering algorithm validation with simulated channels with 8 clusters. (a) Simulated MPCs with SCME channel model, where the raw clusters are
plotted with different colors. (b) Clustering results with the proposed KPD algorithm. (c) Clustering results with the KPM algorithm.
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Clustering algorithm validation with simulated channels with 12 clusters. (a) Simulated MPCs with SCME channel model, where the raw clusters

are plotted with different colors. (b) Clustering results with the proposed KPD algorithm. (c) Clustering results with the KPM algorithm.

is achieved.

Figs. 3-5 show the raw clusters in the simulated channel and
the clustering results by using the KPD and KPM algorithms
for comparisons. We generated 4, 8, and 12 clusters with
different power and delay/angular positions in Fig. 3, Fig.
4, and Fig. 5, respectively 2. It can be seen that the KPM
usually leads to a wrong cluster number decision: 3, 7, and
10 clusters are identified by KPM for Fig. 3, Fig. 4, and Fig.
5, respectively. The values of F measure are also summarized
in Table I, where we can see that the KPD leads to a larger
value of F measure and thus has a better performance. Note
that the above simulation is affected by the randomly generated
channels.

Furthermore, we test the performance of the algorithm under
different cluster numbers and cluster angular spreads, and we
still use the SCME channel model to generate MPCs. Fig.

2Each figure is based on one random simulation of SCME channel model.

TABLE 1
F MEASURE EVALUATION
Simulation | KPD | KPM
Fig. 1 1.00 | 0.85
Fig. 2 0.99 | 092
Fig. 3 0.96 | 091

6 shows the impact of cluster number, where 300 random
channels are simulated for each cluster number case. It can
be seen that the proposed KPD algorithm shows a better
performance, and the value of the F measure decreases only
slightly for larger cluster numbers. The KPM algorithm shows
good performance only for a small number of clusters.

Then we test the impact of cluster angular spread on the
clustering accuracy. Different spreads are introduced by adding
white Gaussian noise with variances of {1°,2°, ... 15°} to
the MPCs DOA and DOD [25]. 300 random channels are
simulated for each cluster angular spread case. In Fig. 7
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are simulated.

and Fig. 8, the numbers of clusters are fixed to 8 and 10,
respectively. It is noteworthy that the F measure generally
decreases with the increasing cluster angular spread, and
the KPD algorithm shows a better performance for arbitrary
cluster sizes.

V. CONCLUSION

In this paper, a KPD based algorithm is proposed for MPC
automatical clustering. It uses the Kernel density to incorporate
the modeled behavior of MPCs and only considers the K
nearest MPCs in the relative density estimation, which is able
to better identify the local density variations of MPCs. A
heuristic approach to merge clusters is introduced to improve
the clustering performance. The synthetic MIMO channel data
validates the proposed algorithm and it is found that the KPD
algorithm provides a trustworthy clustering result with a small
number of user input.
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