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Abstract—Distinguishing between line-of-sight (LOS) and non-
LOS (NLOS) based on measured channel impulse responses
is a fundamental problem for localization systems, as well
as channel modeling. In this work we show that the use of
angular information can considerably enhance the accuracy of
such a scenario discrimination, and we propose the use of
support vector machines (SVM) for performing this task. We
demonstrate, using real-world channel measurements, that the
new method provides significantly improved detection, reducing
in our measured channels the mis-identification rate from 10%

to less than 4%.

Index Terms—NLOS identification, channel measurement,
Rician-K-factor, channel modeling, support vector machines.

I. INTRODUCTION

Location-awareness has become an essential need in a

variety of commercial and military applications [1], [2]. Many

localization systems, such as the Global Positioning System

(GPS), cellular 911 localization, and indoor localization sys-

tems, are based on measuring the runtime to the runtime

between anchor nodes with known location, and the agent

nodes whose location has to be determined. However, the line-

of-sight (LOS) connection between the nodes may be blocked

by obstacles in the environment, which leads to a NLOS con-

dition. NLOS propagation channels introduce a (positive) bias

in distance estimation algorithm [3], [4]; it is thus critically

important to distinguish such channels from LOS channels,

based on quantities that can be easily measured, i.e., the

impulse responses; such a distinction allows to either discard

NLOS measurements, or perform more advanced processing

to reduce their harmful impact For this reason various NLOS

identification methods have proposed in the literature, e.g., [5],

[6].

Another important application for LOS/NLOS discrimina-

tion is channel modeling: since most channel models propose

to use different channel parameters in LOS and NLOS, re-

spectively, e.g., COST 2100 [7], distinguishing between those

situations is important.

An example for the above issues are V2V communication

system, where due to the mobility of cars and the diversity of

environments, the wireless signals may be blocked or reflected

by other cars or buildings in the street; therefore there is

often only a NLOS connection between two cars that need to

communicate with each other and/or need to find each others

position.

In the past, the most widely used solutions to distinguish

the LOS and NLOS scenarios included:

• Design the measurement campaign to inherently distin-

guish the scenarios. For channel modeling, the most

direct way is to individually measure the channel in the

LOS and NLOS scenarios, respectively. For example [8]

measured the V2V channel in an intersection scenario,

where the Tx- and Rx-cars first move in convoy and then

separate to different directions at the intersection. Thus

the measurement campaign has separate LOS and NLOS

environments.

• Visual inspection by cross-checking video data and mea-

surement data. For some environment, the LOS and

NLOS conditions occur randomly due to blockage by

cars or pedestrians. For example [9] used recording from

cameras mounted near the Tx and RX to distinguish the

LOS and NLOS situations.

• Using some characteristic parameters of the propagation

channel to determine whether it is a LOS or NLOS

scenario, e.g., [10] used the Rician-K-factor to estimate

whether it is a LOS or NLOS scenario.

• Using machine learning tools to distinguish the

LOS/NLOS scenarios. Due to the good classification per-

formance of many machine learning tools, many studies

conduct machine learning methods to distinguish the LOS

and NLOS scenarios, e.g., support vector machine (SVM)

[11], relevance vector machine (RVM) [12], and neural

network [13].

It is noteworthy that the first two solutions above are not

applicable for localization applications, because they require

cumbersome human intervention. While using certain channel

characteristics can be automatically deployed, a number of

investigations have shown the most commonly used criteria

(such as Rice factor) result in a rather high mis-identification

rate. The now common use of multiple-input-multiple-output

(MIMO) systems provides an opportunity to observe the

propagation channel in the angular domain, which allows to

investigate new discrimination criteria. At the same time, the

good accuracy of machine learning tools for classification



makes the machine learning-based LOS/NLOS algorithms a

promising approach to further enhance the accuracy.

Inspired by these considerations, we propose in this paper an

angular information-based LOS/NLOS identification algorithm

that combines conventional channel features, e.g., Rician-K-

factor, kurtosis, and RMS-delay spread, with angular informa-

tion as the training data for a SVM to generate an accurate

classifier to distinguish the LOS and NLOS conditions, and

demonstrate its efficacy in measured V2V channels.

The main contributions of this paper are summarized as

follows:

• To the best of our knowledge, the proposed scheme is

the first to use the angular information to identify the

LOS/NLOS scenario.

• We propose a novel identification solution by using

an SVM that combines angular and traditional channel

parameters. In other words, instead of simply using the

conventional Rician-K-factor, Kurtosis or Skewness, we

also extract the angular features as training data and use

SVM with all of them to generate the classifier model to

distinguish the LOS and NLOS scenario.

• We use real V2V measurement data to assess the per-

formance of our new algorithm; to the best of our

knowledge, this is the first use of real measurement

data in this context. In our experiments, the proposed

solution reduces the identifying error rate from 10% for

conventional solutions to 5%.

The rest of this paper is organized as follows. We first

introduce the measurement campaign and parameter extraction

in Section II. The details of the proposed algorithm are

elaborated in Section III. Section IV presents the algorithm

performance analysis based on the measurement data. Finally,

Section V presents conclusions and an outlook to future work.

II. LOS/NLOS IDENTIFICATION

In this section, we present the angular information-based

LOS/NLOS identification in two steps: the feature selection

and data training of using SVM.

A. Feature Selection

Generally, the main factors affect the accuracy of an SVM-

based classifier include: i) the design of the input feature vector

and ii) the parameter settings of the SVM method. Through our

experiments, the former factor most influences the LOS/NLOS

identification, which indicates that feature selection is a key

point to generate an accurate NLOS classifier.

From measured (or simulated) propagation channels, it is

possible to extract a number of features expected to capture

the salient differences between LOS and NLOS conditions

for each snapshot. The selected features for the j-th snapshot

include:

Maximum received power over delay samples

(max(|hj(t)|
2)): The LOS multipath component (MPC)

generally contains more power than the NLOS MPCs,

therefore, the maximum received power of each snapshot

max(|hj(t)|
2) is a referential information for NLOS.

Kurtosis of the received power (Kj) measures the peaked-

ness of the probability distribution, which is defined by the

ratio between the fourth and the second order moments of the

received signal’s amplitude. Usually, the amplitude of signals

in the NLOS scenario decreases slower than the LOS scenario,

thus the kurtosis is generally larger for a LOS condition, which

is also expressed in Fig. 2(a). The kurtosis can be calculated

as:

Kj =
E[(|h(t)| − µ|h(t)|)

4]

E[(|h(t)| − µ|h(t)|)2]2
=

E[(|h(t)| − µ|h(t)|)
4]

σ4
|h(t)|

(1)

where µ|h(t)| and σ|h(t)| are the mean and standard deviation

of |h(t)|, which can be expressed as:

µ|h(t)| =

∑L
l=1 ||h(tl)| − |h̄(t)||

L
(2)

σ|h(t)| =

√

∑L
l=1(|h(tl)| − |h̄(t)|)2

L
. (3)

Skewness of the received power (Sj) measures the asym-

metry of the probability distribution, thus the skewness of a

Rayleigh distribution is generally larger than that of a Rician

distribution. More generally, the NLOS data usually have a

higher skewness than the LOS data. The skewness can be

calculated as:

S =
E(|h(t)| − µ|h(t)|)

3

σ3
|h(t)|

(4)

where µ|h(t)| and σ|h(t)| are given in (2) and (3), respectively.

Rising time (∆τj) measures the time interval between the

first MPC and the last MPC. Considering the NLOS scenarios

usually contain more reflections and scatterings, which means

propagation distance is generally longer, the rising time in

NLOS scenarios is usually larger than it in the LOS scenarios.

The rising time can be calculated as:

∆τj = argmax
τ

|hj(t)| −min(τl) (5)

where l is the index of the MPCs.

RMS-delay spread (τj,rms) measures the rms delay spread

of all MPCs in the current snapshots. In an NLOS channel

single strong component (LOS) is absent, which tends to lead

to a higher concentration of the power in delay; thus the RMS-

delay spread is generally higher in the NLOS scenarios than in

the LOS scenarios. The RMS-delay spread can be calculated

as:

τrms =

√

√

√

√

∑L
l=1(τl − τm)2|h(tl)|2

∑L
l=1 |h(tl)|

2
(6)

where τm is the means excess delay, which can be expressed

as:

τm =

∑L
l=1 τl|h(tl)|

2

∑L
l=1 |h(tl)|

2
. (7)

Rician-K factor (Kr,j) is defined as the ratio between the

power of a (possible) dominant MPC (typically the LOS) and

the power in the remaining MPCs. Existing theoretical and



empirical studies have shown that there is a link between

the Rician-K factor and the presence of LOS conditions. The

Rician-K factor can be roughly approximated as:

Kr =
(|h(t)|max)

2

2σ2
|h(t)|

(8)

where |h(t)|max represents the amplitude of the main peak,

which physical meaning is interpreted here as the LOS trans-

mission peak (though strictly speaking it can also be created

by a dominant reflected component). σ|h(t)| is the variance of

amplitude, representing the intensity of the multipath transmis-

sion signal. Specifically, in NLOS conditions where no direct

path exists, the Rician K factor is expected to be close to zero.

Angular difference (∆λj,l) measures the difference between

the AOA (θ) and AOD (φ) of the strongest MPC in each snap-

shot. In the LOS scenario, the strongest MPC should be the

LOS MPC. For a LOS MPC, the signal transmitted from the

Tx directly propagates to the Rx, thus the angular difference

between the AOA and AOD should relatively remain constant

(unless the cars turn at different times), whereas the angular

difference of an NLOS MPC may change instantly due to the

dynamic reflection object in V2V channels. For the strongest

MPC l in j-th snapshot, the angular difference is defined as

∆λj,l = |exp(i ∗ θl,max)− exp(i ∗ φl,max)| (9)

Note that, to avoid the impact of the periodicity of the angle,

the angular difference is calculated as by using Euclidean

distance in Cartesian coordinate.

Angular spread of departure/arrival (λASD/λASA) mea-

sures the angle spread of departure/arrival of all MPCs in

the current snapshot. Since the propagated signals more con-

centrate on the LOS MPC in the LOS scenarios, the angle

spread of the LOS scenarios is generally smaller than it in the

NLOS scenarios. The angular spread of departure/arrival can

be calculated as [14]:

λj,ASD/ASA =

√

√

√

√

∑L
l=1 | exp (i ∗ θl/φl)− µθ/φ,j |2|h(tl)|2

∑L
l=1 |h(tl)|

2
.

(10)

where the µθ/φ is the mean of the angular power spectrum,

which can be calculated as:

µj,θ/φ =

∑L
l=1 exp (i ∗ θl/φl)|h(tl)|

2

∑L
l=1 |h(tl)|

2
. (11)

Note that while the first parameters have been used for

LOS/NLOS detection for a considerable time, use of the

angular parameters is novel.

Consequently, the input (feature) vector for the j-th snapshot

of the static solution can be expressed as:

xj = {max (|hj(t)|
2),Kj , Sj ,∆τj ,

τj,rms,Kr,j ,∆λj,i, λj,ASD, λj,ASA},
(12)

B. NLOS/LOS Identification based on Support Vector Ma-

chines

The SVM is a supervised learning method which has a great

advantage on classification, especially for binary classification

problem [15]. The SVM has been widely used for classifi-

cation as its robustness and few requirements of pre-defined

parameters. Specifically, least squares support vector machines

(LS-SVM) [16] is used in this study to avoid the quadratic

programming problem, which simplifies the optimization to

learn the weights in the SVM.

A linear classifier can be expressed as a function of X ⇒
{−1,+1} with the following form.

L(x) = sign[wTϕ(xj) + w0] (13)

where sign is the signum function, ϕ(·) is a predetermined

function, w and w0 are weight parameters learned from the

training data {xj ,Lj}
N
j=1, where xj ∈ X and the input labels

Lj ∈ {−1,+1}. In this case, the LS-SVM separates two

classes {−1,+1} by determining the separating hyperplane

that maximizes the margin between the two classes. Therefore,

the LS-SVM classifier is obtained by solving the following

optimization problem.

arg min
w,w0,e,σ2

1

2
||w||2 + c

1

2

N
∑

j=1

e2j (14)

s.t. Lj [w
Tϕ(xj) + w0] = 1− ej , ∀j (15)

where c is the weighting factor that controls the trade-off

between training error and model complexity. Moreover, con-

sidering that the extracted characteristics of the LOS/NLOS

scenario are not linear separable, as shown in Fig. 2, we use a

Gaussian radial basis function (RBF) [17] rather than a linear

mapping function to better classify the LOS/NLOS scenarios:

k(x,xj) = ϕ(x)T · ϕ(xj) = exp

[

−
||x− xj ||

2
2

2σ2

]

(16)

where σ2 is the hyper-parameter learned from the training

data using (14). It has been proven that the optimization

problem (14) is a linear programming problem [16], which can

be solved with its Lagrangian dual and Karush-Kuhn-Tucker

conditions to obtain the prediction of the LS-SVM as

L(x) = sign





N
∑

j=1

αjLjk(x,xj) + w0



 (17)

where αj is the Lagrange multiplier.

To distinguish the LOS and NLOS scenarios, we train an

LS-SVM classifier with the input xj and corresponding labels

Lj = −1 and +1 for the NLOS and LOS data, respectively.

It is noteworthy that not only are we interested in the

performance of the LS-SVM for certain features, but we

are also interested in which subsets of the available features

give the best performance. The details of the experiments are

present in Section IV.



TABLE I
PARAMETERS AND SYSTEM SETUP OF THE MEASUREMENT CAMPAIGN

Parameter Value

Carrier frequency 5.9 Ghz
Bandwidth 15 Mhz

Transmit Power 26 dBm
Number of Tx antennas 8
Number of Rx antennas 8

Sampling rate 20 MS/s

III. MEASUREMENT CAMPAIGN AND PARAMETER

EXTRACTION

This section provides details of the measurement campaign

and parameter extraction procedure that provides the channel

characteristics on which the evaluation of the proposed algo-

rithm is based.

A. Measurement Campaign

The V2V measurement campaign was conducted with a

self-built real-time MIMO channel sounder described in [18].

The sounder includes a pair of NI-USRP RIOs as the main RF

transceivers, two GPS-disciplined rubidium references as the

synchronization units and a pair of 8-element uniform circular

arrays (UCAs) that are connected to the USRPs via electronic

switches. The key parameters of the setup are given in Table

I, and Figs. 1(a) and (b) show pictures of the measurement

cars and antenna array.

The measurements analyzed here were conducted on the

campus of the University of Southern California, LA, and

public roads near the campus, as shown in Fig. 1(d). We

used 360◦ cameras located next to the Rx and Rx to record

videos of the environment during the whole measurement.

Thus, determination of the ”ground truth”, i.e., whether LOS

or NLOS was valid at a particular time, can be accurately

determined. This will be used both for the training, and the

performance assessment. Fig. 1(c) gives an example snapshot

of the video at the RX side. More details of the sounder and

the measurement campaign can be found in [18], [19].

B. Parameter Extractions and Problem description

To utilize the angular information to distinguish the LOS

and NLOS scenario, the relevant channel characteristics need

to be extracted first. Therefore, RiMax, a high-resolution pa-

rameter estimation algorithm [19] is implemented to estimate

the parameters of MPCs in each snapshot, including the power,

delay, azimuth of arrival (AOA), azimuth of departure (AOD),

which are denoted as {|hi(t)|
2, τi,Θi,Φi}, where i is the index

of the MPCs. RiMax is essentially an iterative maximum-

likelihood estimator that provides both the MPC parameters,

and an estimate of the diffuse background. For the current

paper, we will only exploit knowledge of the discrete MPCs.

Besides these parameters, the most widely used charac-

teristics to identify a NLOS condition include kurtosis and

Rician-K-factors. However, for time-varying V2V channels,

it is hard to find a certain threshold of the characteristics to

distinguish the LOS and NLOS scenario. As shown in Fig. 2,

both the kurtosis or the angle spread of arrival show different

(a) (b)

(c)

(d)

Fig. 1. Antenna arrays and measurement environments. (a) Antenna array at
the Tx side. (b) Antenna array at the Rx side. (c) An example of the video shot
at RX side during the measurements. (d) Routes of the V2V measurement.

distributions in the LOS and NLOS scenarios, but there exists

no threshold to separate the LOS and NLOS data perfectly.

In contrast, the SVM based identification can well employ the

different features within different dimensions and achieve a

high accuracy of identification as the result. Therefore, our

proposed algorithm employs different characteristics to build

a feature vector and uses SVM to generate the classifier. The

details of the proposed algorithm are given in Section III.

IV. ALGORITHM VALIDATION FROM EXPERIMENTAL

RESULTS

In this Section, we present the details of the experiments

based on the V2V measurement data introduced in Section

II, including the contribution of different features to the

classification and the final results.

A. Feature Contribution

To better analyze the contributions of different character-

istics, which are extracted from the V2V measurement data,

to the LOS/NLOS identification, we analysis the identification

performance for each characteristic as shown in Fig. 4, where

(a)-(i) give the probability distribution functions (PDF) of

different extracted characteristics. From the result, all of the

extracted characteristics show different features in the LOS

and NLOS scenarios, respectively. Specifically, the angular-

based characteristics (angular distance, ASD, and ASA) show

a good separation of the LOS and NLOS data, where the LOS
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Fig. 2. The distribution of the factors in the LOS and NLOS, respectively.
(a) Kurtosis (b) Angle spread of arrival.

data are generally centralized to a certain value and the NLOS

data have a relatively scattered trend.

Nevertheless, most of these characteristics also have some

overlap areas between the LOS and NLOS scenarios. Thus,

it is hard to directly determine whether it is a LOS/NLOS

scenario based on single characteristic.

B. Results and Discussion

To evaluate the performance of our solution, we validate

the algorithm by using the V2V measurement data and make

a comparison of: i) the conventional single characteristic-

based identification solution, ii) the conventional SVM-based

identification solution, which uses the characteristics except

for the angular-based features as the training data for the SVM,

and iii) the proposed solution, which includes the angular

characteristics.

In this part of the validation, we divide the measurement

results into two sets for training and valuation, respectively.

We consider two types of dividing the data. First, we randomly

select data sets for training, and validate the algorithm by

using the remaining data, which is the usual approach for SVM

validating and named Partition A. As a comparison, we select

the data collected at two certain roads in and out the campus,

respectively, for training, whereas the data collected at the

other roads are used for validation, which is more practical

and named Partition B. The validation layout parameters are

given in Table II.

Fig. 3 gives the error rate of the LOS/NLOS identification

for Partition A and B by using the proposed solution, the con-

ventional SVM-based solution, and the single characteristic-

based identification results. From the result, it is found that

TABLE II
VALIDATION LAYOUT PARAMETERS

Data sets Number of data sets

Total LOS/NLOS data sets 9295 / 7581
Training data of LOS/NLOS for Partition A 5577 / 4549

Validation data of LOS/NLOS for Partition A 3718 / 3032
Training data of LOS/NLOS for Partition B 5044 / 2838

Validation data of LOS/NLOS for Partition B 3413 / 4943

0.00% 20.00% 40.00% 60.00%

Proposed solution

Conventional SVM

Kurtosis

Skewness

Rising Time

Maximum Power

RMS delay

Rician K factor

Angular Distance

ASA

ASD

Partition A

Partition B

Fig. 3. Error rate of LOS/NLOS identification for Partition A and B.

both the proposed and the conventional SVM-based solutions

outperform all the single characteristic-based solutions, and

that the proposed angular-information based LOS/NLOS i-

dentification achieves the lowest error rate. Meanwhile, all

solutions for Partition B have higher error rate compared with

Partition A, since in Partition B, we used the data collected

at different street for training and validation, respectively. In

other words, the training and validation data for Partition B

have less correlation, which make the identification harder but

more practical. In addition, among the single characteristics,

the maximum power has the best identification accuracy,

where the angular distance also shows a good performance

on identification.

V. CONCLUSION

In this paper, we propose an angular information-based

LOS/NLOS identification algorithm, which not only uses the

conventional NLOS identification features but also employs

the channel characteristics in the angle domain, including

ASA, ASD, and angular distance. The LOS/NLOS classifier is

generated by using an SVM based on the V2V measurement

data. From our validation, the proposed solution reduces the

identifying error rate from 10% for conventional solutions to

5% in classical setup. In the future work, the contributions

of the time-varying channel characteristics to LOS/NLOS

identification will be further studied.
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Fig. 4. Probability distribution function (PDF) of different extracted characteristics, including: (a) Maximum power, (b) Kurtosis, (c) Skewness, (d) Rising
time, (e) RMS delay spread, (f) Rician-K-factor, (g) Angular distance, (h) Angular spread of departure, and (i) Angular spread of arrival.

REFERENCES

[1] R. M. Vaghefi and R. M. Buehrer, “Cooperative Joint Synchronization
and Localization in Wireless Sensor Networks,” IEEE Transactions on

Signal Processing, vol. 63, no. 14, pp. 3615–3627, July15, 2015.

[2] T. Lv, H. Gao, X. Li, S. Yang and L. Hanzo, “Space-Time Hierarchical-
Graph Based Cooperative Localization in Wireless Sensor Networks,”
IEEE Transactions on Signal Processing, vol. 64, no. 2, pp. 322–334,
Jan.15, 2016.

[3] Y. Shen and M. Z. Win, “On the accuracy of localization systems using
wideband antenna arrays,” IEEE Transactions on Communications, vol.
58, no. 1, pp. 270-280, January 2010.

[4] S. Gezici et al., “Localization via ultra-wideband radios: a look at
positioning aspects for future sensor networks,” IEEE Signal Processing

Magazine, vol. 22, no. 4, pp. 70-84, July 2005.

[5] R. Casas, A. Marco, J. J. Guerrero, and J. Falco, “Robust estimator for
non-line-of-sight error mitigation in indoor localization,” EURASIP J.

Appl. Signal Process., no. 1, pp. 156–156, 2006.

[6] B. Denis and N. Daniele, “NLOS ranging error mitigation in a distributed
positioning algorithm for indoor UWB ad-hoc networks,” In Proc.

International Workshop on Wireless Ad-Hoc Networks, 2004., Oulu,
Finland, 2004, pp. 356–360.

[7] L. Liu et al., “The COST 2100 MIMO channel model,” IEEE Wireless

Communications, vol. 19, no. 6, pp. 92–99, December 2012.

[8] R. He et al., “Vehicle-to-Vehicle Radio Channel Characterization in
Crossroad Scenarios,” IEEE Transactions on Vehicular Technology, vol.
65, no. 8, pp. 5850–5861, Aug. 2016.

[9] R. Wang, O. Renaudin, C. U. Bas, S. Sangodoyin and A. F. Molisch,
“Vehicle-to-vehicle propagation channel for truck-to-truck and mixed
passenger freight convoy,” In Proc. 2017 IEEE 28th Annual International

Symposium on Personal, Indoor, and Mobile Radio Communications

(PIMRC), Montreal, QC, 2017, pp. 1–5.

[10] P. Tang, J. Zhang, A. F. Molisch, P. Smith, M. Shafi, and L. Tian,
“Estimation of the K-factor for Temporal Fading from Single-Snapshot
Wideband Measurements,” IEEE Trans. Veh. Technol., early access, pp.
1–1, 2018.

[11] S. Marano, W. M. Gifford, H. Wymeersch, and M. Z. Win, “NLOS
identification and mitigation for localization based on UWB experimen-
tal data,” IEEE J. Sel. Areas Commun., vol. 28, no. 7, pp. 1026–1035,
2010.

[12] T. Van Nguyen, Y. Jeong, H. Shin, and M. Z. Win, “Machine Learning
for Wideband Localization,” IEEE J. Sel. Areas Commun., vol. 33, no.
7, pp. 1357–1380, 2015.

[13] F. Xiao, Z. Guo, H. Zhu, X. Xie and R. Wang, ”AmpN: Real-time
LOS/NLOS identification with WiFi,” in Proc. 2017 IEEE International

Conference on Communications (ICC), Paris, 2017, pp. 1–7.
[14] A. F. Molisch,Wireless Communications. Hoboken, NJ, USA:Wiley,

2011.
[15] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,

vol. 20, no. 3, pp. 273–297, 1995.
[16] J. A. K. Suykens and J. Vandewalle, “Least squares support vector

machine classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–
300, Jun. 1999.

[17] M. Buhmann, Radial Basis Functions: Theory and Implementations, 1st
ed. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[18] R. Wang, C. U. Bas, O. Renaudin, S. Sangodoyin, U. T. Virk and A.
F. Molisch, “A real-time MIMO channel sounder for vehicle-to-vehicle
propagation channel at 5.9 GHz,” In Proc. 2017 IEEE International

Conference on Communications (ICC), Paris, 2017, pp. 1–6.
[19] R. Wang, O. Renaudin, C. U. Bas, S. Sangodoyin, and A. F. Molisch,

“High-resolution parameter estimation for time-varying double direc-
tional V2V channel,” IEEE Trans. Wirel. Commun., vol. 16, no. 11, pp.
7264–7275, 2017.


