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Abstract—Clustering of multipath components (MPCs) is an
important aspect of propagation channel modeling. When a time
series of measurements, based on movement of transmitter and/or
receiver, is available, the temporal evolution of MPCs can be
used as a basis for clustering. We present an algorithm that
bases clustering not only on distance of MPCs in the delay/angle
space, but also how similar the temporal evolution of their
parameters are. Sample results obtained from a vehicle-to-vehicle
measurement campaign show good performance of the proposed
algorithm.

Index Terms—Clustering, tracking, multipath component,
channel measurement and modeling, machine learning.

I. INTRODUCTION

Accurate yet reasonably simple channel models are an
essential requirement for the design and testing of wireless
communications systems. The most widely used channel mod-
els aim to characterize the parameters of the multipath com-
ponents (MPCs), such as amplitude, delay, and/or direction,
in various scenarios. Extensive channel measurements have
found that the MPCs generally occur in groups, also known
as clusters. This motivates the widespread use of clustered
channel models, which separately describe the inter-cluster and
intra-cluster properties, thus greatly reducing complexity with
minimal loss of accuracy, e.g., COST 2100 [1], 3GPP Spatial
Channel Model [2], and WINNER [3]. Parameterization of the
models from measurements requires estimation of the MPC
parameters, and subsequent clustering.

Most measurements in the literature are done at several,
isolated, spatial points, so that the MPCs are extracted from
a single spatial “snapshot”. The subsequent clustering then
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defines a cluster as a group of MPCs that have delay/angle
channel parameters that are similar amongst each other, but
significantly different from those of MPCs in other clusters.
While these “static clustering” algorithms are popular [4]–
[7], results can be sensitive to arbitrary threshold parameters.
Examples for such algorithms are the [4] and the Kernel-
power-density (KPD)-based clustering algorithm [5]. Instead
of identifying clusters based on the MPCs, [6] identifies the
cluster directly from the power angle spectrum of the current
snapshot, which is less accurate but with less computation
complexity as well.

In any case, most of the current clustering solutions only
consider the distribution of MPCs in each snapshot separately
and ignore the evolution pattern of clusters and MPCs over
time, which naturally leads to the birth and death of clusters
and MPCs. Nevertheless, the birth and death process of clus-
ters and MPCs is a very typical and important characteristic of
channels that are time-varying due to movement of transmitter
(Tx) and/or receiver (Rx). For example, either a stationary
object (e.g., tree) or moving object like a vehicle, that acts
as a reflector/scatterer, appears and disappears, thus resulting
in birth and death of a certain cluster. In this case, specifical-
ly when measurements on continuous trajectories of Tx/Rx
are available, we argue that a more physically meaningful
definition of clusters is the following: MPCs whose delays
and angles show a similar evolution over time constitute a
cluster, or more precisely, a trajectory-defined cluster. For this
type of clustering, suitable algorithms generally fall into two
categories:

• Clustering first and tracking after: To evaluate the time-
varying characteristic, the most intuitive solution is to
first identify the clusters in each snapshot, by using
the solutions of Static Clustering, and then track the
identified clusters over time. These solutions separate the
clustering and tracking procedures, e.g., the power-angle-
spectrum based clustering and tracking algorithm [6] and
the multipath clustering and tracking algorithm [8];

• Jointly clustering and tracking: Since the moving pattern
of each MPC is actually an important characteristic for
clustering, clusters can be based on the moving trajec-
tories of MPCs, e.g., Kalman-filter-based tracking and
clustering algorithm [9] and the tracking-based clustering
algorithm [10].

Measuring the difference of evolution between different M-
PCs’ trajectories is crucial for identifying the trajectory-
defined cluster, which, however, has not been well addressed
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in the past. The Kalman-filter-based tracking and clustering
algorithm in [9] only uses the trajectory for initialization of the
next snapshot clustering, whereas the tracking-based clustering
algorithm in [10] simply considers the moving probability of
MPCs as a feature for clustering.

In this paper, we propose an alternative approach, in which
we track the MPCs first, and cluster them subsequently based
on the temporal evolutions. The main contributions of this
paper are the following.

• To the authors’ best knowledge, this paper is the first to
develop a trajectory-based clustering algorithm for time-
varying channels. The proposed algorithm naturally fits to
the definition of clusters as MPCs with similar temporal
evolution.

• We propose a novel distance measure function to mea-
sure the distance between trajectories in time dimension,
which considers all the differences between the shape,
the position, and the length of trajectories.

• We demonstrate the effectiveness of the approach on
results from a vehicle-to-vehicle (V2V) channel mea-
surement campaign, since such channels exhibit strong
time variations and are thus an especially interesting case
study.

II. PROBLEM DESCRIPTION AND FRAMEWORK OF
PROPOSED ALGORITHM

In any wireless channel, the signal propagates from the
Tx to the Rx via different paths, giving rise to the differ-
ent MPCs. The parameters of MPCs in each snapshot can
be extracted by using high-resolution-parameter-estimation
(HRPE) algorithms, e.g., Rimax [11] or the space-alternating
generalized expectation-maximization (SAGE) [12]. The most
general channel representation is then the double-directional
channel model [13], which represents the channel as the sum
of the MPCs with complex amplitude α, delay τ , azimuth
of departure (AOD) ϕT , elevation of departure θT , azimuth
of arrival ϕR, elevation of arrival (EOA) θR, and Doppler
∆f of the MPCs1. We consider M snapshots of data, m =
1, 2, · · · ,M , where each snapshot contains a number of Nm

MPCs.2 Thus, the n-th MPC in the m-th snapshot can be
represented by the multi-dimensional parameter vector xm

n =
[αm

n , τmn , ϕm
T,n, θ

m
T,n, ϕ

m
R,n, θ

m
R,n,∆fm

n ], n = 1, 2, · · · , Nm.
The goal of the algorithm is to identify dynamic clusters

in the time-varying channels, which requires both tracking
and clustering of the MPCs extracted in each snapshot. As
mentioned in Sec. I, utilizing the trajectories of the MPCs in
the parameter space can improve the accuracy of clustering.
Therefore, the proposed algorithm identifies the trajectory of
each MPC first, then clusters MPCs based on the identified
trajectory.

Thus, the MPCs are clustered considering not only the
current parameters but also the parameters in the past as
well as the future (for the case that clustering is done off-
line for the evaluation of a measurement campaign). This

1Note that the elevation domain may not be considered in some cases, e.g.,
the data are collected by a horizontal uniform linear array.

2Note that superscript m denotes an index, not an exponent.
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Fig. 1. Illustration of different trajectories between the MPCs. xm
i and xm+1

i
are the MPCs in snapshot m and snapshot m+ 1, respectively, whereas Di

is the distance between different MPCs.

allows to identify different clusters having a close distance in
delay/angle space but with different evolution paths. Note that,
extraction and tracking of MPCs can be either separate (HRPE
+ tracking) or joint (Extended Kalman-filter based parameter
estimation and tracking). In the following, we propose a
clustering algorithm for MPC based on the former approach.

III. TRACKING JOINT CLUSTERING ALGORITHM

This section presents the procedure of the proposed algo-
rithm, which has two main stages: Trajectory identification
and Trajectory clustering.

A. Trajectory identification

To identify the trajectory (temporal evolution of an MPC),
the MPCs needs to be tracked over consecutive snapshots.
Existing tracking algorithms for MPCs can be roughly clas-
sified into: threshold-based, i.e., MPCs are associated based
on a fixed distance threshold [8], and minimum distance-
based, i.e., MPC pairs are associated based on the minimum
distance among each pair. For time-varying channels, it is
hard to determine a fixed threshold for MPC tracking since
the distribution of parameters continuously evolves with the
dynamic environment. Therefore, we use a minimum distance-
based solution in our research. Nevertheless, most of the past
minimum distance-based solutions use the local minimum
distance for tracking, which means a pair of MPCs having
the smallest distance is primarily linked. This usually leads to
a locally optimum result, as shown as {D(A,D), D(B,C)}
in Fig. 1, where the pair of MPCs xm

1 and xm+1
2 has the local

minimum distance D(A,D). However, the globally optimum
result of Fig. 1 should be {D(A,C), D(B,D)}.

To achieve better accuracy, the trajectory of the MPC is
identified by seeking the global minimum distance of all MPC
pairs, as follows

D
m,m+1
min = arg min

Dm,m+1

Nm∑
i=1
j=1

D(xm
i ,xm+1

j ), i ̸= j (1)

where D(xm
i ,xm+1

j ) is the distance between the i-th MPC
and the j-th MPC in two consecutive snapshots, Dm,m+1 is
the set of all possible trajectories between these snapshots.
The distance D(xm

i ,xm+1
j ) thus is computed as a normalized

Euclidean distance of angle, delay, and power [14].
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To solve the problem in (1), we use the Kuhn-Munkres
algorithm, which is able to find the minimized weight-perfect
matching in a bipartite graph of a general assignment problem.
The details of the Kuhn-Munkres-based tracking algorithm can
be found in [6]. It is noteworthy that the number of MPCs in
two snapshots is allowed to be different, i.e., Nm ̸= Nm+1,
so that the MPCs that do not associate to others are considered
as dying MPCs or born MPCs.

By using the above approach, we can track the MPCs in
consecutive snapshots. However, as indicated above, there are
also births and deaths in the MPC evolutions. If an MPC xm

i

disappears in the current snapshot and another MPC xm+1
j

appears close to xm
i , they might be classified as the same

MPC, which may lead to a jump in the trajectory (henceforth
called “hopping point”). In this case, we exploit an angular
hopping threshold Γm

n as a function of Doppler to determine
whether the hopping point should be interpreted as separating
two distinct trajectories, as follows:

Γm
n = Υ|∆fm

n Ts|+ Γbaseline (2)

where Υ is a vector of the scale coefficient for MPCs’ param-
eters, i.e., delay, AOA, and AOD, a larger scale coefficient
indicates a larger Γm

n for the same Doppler ∆fm
n , and Ts

is the time interval between two samples. If two consecutive
MPCs (xm

i , xm+1
j ) in one trajectory have a variance of

each parameter more than a threshold Γm
n , then xm+1

j is
considered as a start of a new trajectory. The principle here
is that for an MPC with a larger Doppler, which usually
indicates a faster-moving scatterer, we allow a bigger variance
during evolution, where Γbaseline is the minimum variance of
different parameters, e.g., due to noise in the observations.

B. Trajectory clustering

The past clustering algorithms mostly identified the cluster
based on the distribution of MPCs’ parameters in the current
snapshot, where the evolution of the MPC has not been
taken into account. Instead, our approach directly clusters the
trajectories of the MPCs. In other words, the MPCs that have
a similar evolution pattern and are close to each other, are
identified as the same cluster. Considering its good overall
clustering performance, the KPD algorithm [5] is used here to
cluster the trajectories, where the clustering of the objects is
based on the density of parameters in the multi-dimensional
parameter space. Due to the space constraints, we refer for
details of KPD to [5]. The main change is that we cluster
trajectories rather than MPCs in a snapshot, therefore, how
to measure the distance among trajectories is a key factor
determining performance.

For any two time-varying trajectories, there are two possible
cases: i) two trajectories overlap each other in a certain time
period, which means both of them exist during a period of
time, i.e., Fig. 2(a); and ii) two trajectories are separated in
time, i.e., Fig. 2(b). Let XA and XB represent the two trajecto-
ries to compare, XA/B =

[
x
A/B
1 ,x

A/B
2 , · · · ,xA/B

LA/B

]
, where

LA and LB are the lengths of the two trajectories, xA
i and xB

i

are the i-th MPC in the two trajectories. For the overlapping
case, XA′

and XB′
are the overlapping segment of XA and

Time

(a)

Time

(b)

Fig. 2. Illustration of position of two trajectories, which (a) overlaps each
other (both exist during a period of time) and (b) are separated in time.

XB , respectively, with a length of LAB . For the separated
case, L̃AB is the length of the time interval between two
trajectories. We use different strategies of distance calculation
for these two case. For the overlapping case, the trajectory
distance is calculated based on the shape distance and the
actual distance in the overlapping segment. Specifically, the
shape distance is defined as

D(XA,XB)sp = min
µ

LAB∑
i=1

||xA′

i − (xB′

i − µ)||2 (3)

where µ is an offset used for shifting the XB′
to the position

of XA′
for comparing the difference of the shape. The norm

function is a convex function, thus we can obtain the closed
form solution of µ and re-write (3) as:

D(XA,XB)sp =

LAB∑
i=1

||xA′

i − (xB′

i −
LAB∑
i=1

xA′

i − xB′

i

LAB
)||2.

(4)

By applying µ, XB′
plotted in Fig. 2(a) is shifted to XB′

shifted

for comparing the shape difference with XA′
. The actual

distance calculation can be expressed as

D(XA,XB)at =

LAB∑
i=1

||xA′

i − xB′

i ||2. (5)

Based on the obtained shape distance and actual distance,
the overall trajectory distance between trajectories can be
expressed as:

D(XA,XB) = ζ
(
χ1D(XA,XB)sp + χ2D(XA,XB)at

)
(6)

where χ1,2 are factors determining the weight of the shape
distance and the actual distance and we set them to χ1 =
χ2 = 0.5 in our examples. ζ is a length based factor:

ζ = arctan(
min(LA, LB) + L̃AB

LAB + 1
). (7)

For the separated case, the trajectory distance is calculated as
the difference between the mean value of the MPCs in the two
trajectories.

D(XA,XB) = ζ||
∑LA

m=1 e
m−LAxA∑LA

m=1 e
m−LA

−
∑LB

m=1 e
1−mxB∑LB

m=1 e
1−m

||2

(8)

where e(·) is a decaying factor that makes the MPCs closer
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(a)

(b)

Fig. 3. Clustering evaluation based on synthetic data, where the ground truth
of clusters is given by different marks, and the clustering results of (a) the
proposed algorithm and (b) the Kalman-filter-based algorithm are given by
different colors.

to the end of XA and the beginning of XB have a higher
weight. By applying a factor ζ, the distances between each two
trajectories are weighted considering their relative positions.
Specifically, for the overlapping case, ζ decreases with a
longer overlapping segment LAB of the compared trajectories,
i.e., the trajectories having longer overlapping segment will
have relatively smaller distance and vice versa. For the sepa-
rated case, ζ decreases with a shorter trajectory interval L̃AB ,
i.e., the trajectories with shorter interval will have relatively
smaller distance.

IV. PERFORMANCE VALIDATION

A. Clustering Accuracy

To evaluate the clustering performance, a synthetic channel
is built to generate MPCs with a known ground truth of cluster-
ing. Both our algorithm and the Kalman-filter-based clustering
algorithm in [9] are applied for comparison. As shown in
Figs. 3(a) and (b), the ground truth of cluster identification
is presented by using different marks, i.e., square, diamond,
and circle. The clustering results of (a) the proposed algorithm
and (b) the Kalman-filter-based clustering algorithm are given
by different colors. It can be seen that the Kalman-filter-based
method cannot distinguish two clusters if they are close to
each other, e.g., the cluster marked by red edge, whereas
the proposed algorithm can well recognize them due to their
different moving patterns, e.g., two clusters plotted in blue and
red.

(a)

(b)

Fig. 4. Clustering results obtained by using (a) the proposed algorithm,
(b) the Kalman-filter based clustering algorithm, whereas (c) gives the raw
extracted MPC in dB. The MPCs of the same cluster are plotted by the same
color dot and the size of the dot indicates the delay of the MPC.

TABLE I
PARAMETERS SETTINGS

Γbaseline Υ
Γdelay ΓAOA ΓAOD Υdelay ΥAOA ΥAOD

0.5ns 15◦ 15◦ 2 60 60

For a practical validation, the proposed algorithm is tested
on V2V measurement data, which were collected by a self-
built real-time MIMO channel sounder. The details of the V2V
measurement campaign can be found in [16]. Table I gives the
parameter settings for the tracking threshold, which is used in
(2).

Figs. 4(a)-(c) give clustering results obtained by using (a)
the proposed algorithm, (b) the Kalman-filter-based clustering
algorithm, whereas (c) gives the raw extracted MPCs. The
MPCs belonging to the same cluster are plotted by the same
color dot and the size of the dot indicates the delay of the
MPC. The Kalman-filter-based clustering algorithm only uses
the tracking result as an initial position for KpowerMeans
clustering, and the cluster members keep changing during the
iteration, which results in new cluster IDs and causes the
gradient color in Fig. 4(b).

To better evaluate the clustering performance, we use the
Xie-Beni index [17] to evaluate the two algorithms. The Xie-
Beni index is an objective validation method, which has been
shown to be a good measure of performance for evaluating
clustering algorithm for MPCs. This index is calculated based
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Fig. 5. Performance evaluation of the proposed algorithm and the Kalman-
filter-based clustering algorithm by using the Xie-Beni index.

on the intra-cluster and inter-clusters distances, as follows:

VXB =

∑Nc

j

∑N
cj
x

i (D(xi,Cj))
2

N × [min
i ̸=j

{D(Ci,Cj)|i, j ∈ 1, · · ·Nc}]2
(9)

where Cj is the j-th cluster, Nc is the number of clusters, N
is the total number of clustered MPCs, and N

cj
x is the number

of MPCs in the j-th cluster. The distance function D(·) is a
normalized Euclidean distance following (1). The general idea
of the Xie-Beni index is to measure the ratio of intra-cluster
distance and inter-cluster distance. Hence, a small value of
the Xie-Beni index indicates a better clustering performance.
It is noteworthy that to validate the time-varying clustering
algorithm, the time dimension of the data is treated as another
feature dimension. Fig. 5 gives the performance evaluation of
the proposed algorithm and the Kalman-filter-based clustering
with different numbers of processed snapshots. It is found that,
for clustering the MPCs in a single snapshot, the compared
two algorithms show similar performance. With the increase
of the number of processed snapshots, the performance of
the Kalman-filter-based approach keeps decreasing, whereas
the proposed algorithm can maintain a good performance due
to the utilization of the MPCs’ evolution pattern during the
clustering.

B. Computation Complexity

Besides, the difference in clustering performance, the com-
putational complexity of a clustering algorithm is also an
important performance indicator. Since the joint tracking and
clustering algorithms consist of two procedures, i.e., tracking
and clustering, the computational complexity is determined
based on these two parts. Specifically, the computational
complexity of the proposed algorithm is determined by the K-
M algorithm and the KPD algorithm, i.e., O(M ·N̄3+N2

L ·d),
where N̄ is the average number of MPCs in each snapshot,
NL is the total number of the trajectories in M snapshots and
d is the number of feature dimensions. Similarly, the com-
putational complexity for the Kalman-filter-based algorithm is
O(M · (N̄2 + d3 + d · N̄ · K · T )), where T is the number
of iterations in the clustering procedure and K is the number
of clusters. In this sense, the proposed algorithm has higher
but polynomial computational complexity, which conversely

provides a better clustering accuracy.

V. CONCLUSION

In this paper, we proposed a trajectory-based clustering
algorithm. The algorithm identifies the cluster based on the
difference between MPCs’ evolution pattern to improve the
clustering accuracy and robustness. Data from a V2V mea-
surement campaign are used for performance evaluation. In
the investigated examples, the proposed algorithm achieves a
better performance than the conventional Kalman-filter-based
clustering approach.
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