Distance Dependence of Path Loss Models with
Weighted Fitting

Aki Karttunen! Member, IEEE, Andreas F. Molisch! Fellow, IEEE, Rui Wangl,
Sooyoung Hur? Member, IEEE, Jianzhong Zhang? Senior Member, IEEE, and Jeongho Park?

1 University of Southern California, Dept. of Electrical Engineering, Los Angeles, CA, USA,
Email: {karttune, molisch, wang78} @usc.edu,
2 Samsung, Email: {sooyoung.hur, jeongho.jh.park, jianzhong.z} @samsung.com

Abstract—The path loss model describing the power-law de-
pendency on distance plus a log-normally distributed shadowing
attenuation, is a staple of link budgets and system simulations.
Determination of the parameters of this model is usually done
from measurements and ray tracing. We show that the typical
least-square fitting to those data points is inherently biased to
give the best fitting to the link distances that happen to have
more evaluation points; this bias might be highly undesirable
in various types of simulations that use the resulting model.
In this paper we present a weighted fitting method to address
this issue. While it is unavoidable that fits are better for one
distance range than another, we argue that such a decision should
be made consciously, and adjusted to the type of simulation
for which the path loss model should be used. We discuss the
weighting functions for different purposes, and show their impact
on prediction accuracy of signal level, interference level, and
capacity in a hexagonal cellular grid simulation. As examples,
weighted fitting models are presented for 28 GHz channels in
urban macrocells, and it is shown that the fitting accuracy can
be improved by our approach.

I. INTRODUCTION

Path loss (PL) is the most fundamental parameter of the
wireless propagation channel, determining the signal-to-noise
(SNR) and signal-to-interference (SIR) ratios, and thus the
coverage range as well as data rates [1]. Accurate path loss
models are thus a conditio sine qua non for wireless system
simulations. In order to properly reflect reality, path loss
models should be extracted from measurements (or ray-tracing
results), as has been done for many decades. Widely used
models based on such parameter extraction are the Okumura-
Hata models [2], the COST 231 path loss models [3], and
many more, see, e.g., [4], [5], and references therein.

Most path loss models assume a power-law dependence on
distance on a logarithmic scale 10 - « - log,(d) + (8, which
is a straight line on a “power in dB” - vs - log;,(d)-plot.
Scatter plots of measurement data can thus be fitted in an
extremely simple way as a least-square fit; an approach that
has been used for decades. However, as we will demonstrate
in this paper, the fitting results are sensitive to the choice of
measurement locations, i.e., how many measurement points
exists at each distance. In other words, those distances at which
the more measurement results are available, inherently provide
the largest impact on the fitting result. We stress that this is

different from the issue that the parameters are different in
different environments (in that case the propagation physics
are responsible for the different parameters); rather the de-
pendence of the measurement locations is a statistical artifact
that stems from: (i) a deviation of the model from the actual
propagation law, and (ii) a finite number of measurement
points. Such a bias should be avoided as much as possible,
as it distorts the results of system simulations done with the
biased path loss model.

While the location bias effect seems obvious in hindsight, it
has, to our knowledge, not yet been recognized and discussed
in the literature.! Besides understanding the nature of the
effect, an important question is if, and how, it can be remedied.
The current paper is intended to address these questions.

The main contributions of this paper are thus: (i) we
point out the issue of the distance bias, (ii) we present a
method for compensating for the bias, through weighting of
the measurement results by their measurement point density
and (iii) we provide examples of this effect based on extensive
ray-tracing results at millimeter-wave frequencies. The method
outlined here is being adopted by an industry standardization
group for millimeter-wave channels, though we stress that it
is generally applicable, not just for mm-wave channels.

The rest of the paper is organized as follows: the path
loss data, used as an example in this paper, are introduced in
Section II, the path loss models and model fitting is presented
in Section III, and the derived models are compared to the
original path loss data in Section IV.

II. PATH LOSss DATA

The principles of the location bias will be explained by
means of example ray-tracing data for mm-wave propagation
channels in an urban environment. Specifically, in this work,
we model the New York University (NYU) campus area in
Manhattan, NY, USA, based on 3D building models. Fig. 1
shows the geometry used for the ray-tracing simulation, which
illustrates the NYU campus model in an area that is 920 m

IThe effect is also related to, though different from, the effect of selec-
tion bias recently discussed in [6]; this selection bias occurs because only
measurement points are used at which the received power is large enough to
actually allow quantitative measurements.



in length and 800 m in width.> We included vegetation in the
building model, and the area of Washington Square Park in
the center of Fig. 1 is modeled with trees in it. The trees
are modeled as 40 dB loss, and the vegetation is placed
from 4~5m over the ground and up to 13 m in height. In
the geographical model, all the buildings and the ground are
assumed to be made of concrete and wet earth, respectively.
Similar environment settings are used as in ITU-R M.2135
and 3GPP SCM for UMa.

In the ray-tracing simulations, the signal power samples are
collected with 5 m resolution within the observation area. The
transmitter is placed 5 m above the rooftop.

The parameters for ray-tracing simulations are the same
as used in [7], [8]. All paths are modeled by reflection,
diffraction, and penetration based on geometrical optics (GO)
and uniform theory of diffraction (UTD) using the ray-tracing
software Wireless In-site designed by REMCOM [9]. In each
ray, at most twelve reflections, two penetrations, and a single
diffraction are considered because attenuation by multiple
diffractions and combination of reflection and diffraction at
mm-wave frequencies are very severe. At each combination
of TX and RX, at most 40 rays and their signal power, phase,
propagation time, direction of departures (DoDs) and direction
of arrivals (DoAs) for both azimuth and elevation are collected
in descending order of received power within 250 dB per-path
path loss. The received power of each RX point is calculated as
a sum of all the path powers, and only this channel parameter
is used for further analysis. Furthermore, each RX location is
categorized as line-of-sight (LOS) or non-line-of-sight (NLOS)
by the definition of visual LOS between the TX an RX.

In order to validate the ray-tracing approach, we performed
ray-tracing simulation on the spots where the NYU Wireless
team conducted 28 GHz-band field measurement campaign in
the same area [10]; (these TX locations marked with red dots
in Fig. 1). The comparison of the measured channels and the
ray tracing is presented in [11].

A total of eleven transmitters (TXs), i.e., base stations (BS),
are simulated in order to eliminate geometry dependency of
the statistical results. The receiver (RX), i.e., mobile station
(MS), height is set to be 1.5 m above the ground, and only
outdoor RX points are simulated.

III. PATH LOSS MODELS WITH WEIGHTED FITTING

Available path loss data are typically unevenly distributed
across the link distances: often the path loss data distribution
is determined by, or at least limited by, practical limitations in
the measurements or the ray-tracing environment. Thus, when
performing a fit of a path loss model to the measurement
results, the distances that by accident have more data points,
have a bigger impact on the fitting parameters. With appropri-
ate weighing it is possible to “equalize” this effect, i.e., give

Note that this is the area for which the building database is available; the
actual observation area (in which TX and RX locations can be) is the smaller
560 m by 550 m area within the red square in Fig. 1. The reason for this
difference is that all relevant interacting objects (i.e., buildings that can give
rise to reflections, scattering, and diffraction) for all observation points have
to be contained in the database.

Fig. 1. Models for ray-tracing simulation

relatively more weight to distances with fewer data points, and
thus improve fitting accuracy for those distances. On the other
hand, we might also want to selectively improve the modeling
accuracy for the shortest or the longest link distances.

Using distance dependent weighted fitting can also be seen
as an alternative to using a more complicated model with
larger number of free parameters, e.g., dual-slope model in [8].
Well parameterized models with a sufficiently large number
of optimized parameters will fit the data for every part of the
distance range with any weighing. On the other hand, a simpler
model is a compromise and does not fit the data equally for
every part of the dataset link distance range.

The distribution of data points within the 28-GHz ray-
tracing dataset is illustrated in Fig. 2. As can be seen, both
the LOS and NLOS datasets are quite unevenly distributed.
Note that later we use a discrete approximation to the point
density pdf; the choice of the bin size” for the distance bins
has to be a compromise between a sufficiently fine distance
resolution, and including a sufficient number of measurement
points in each bin (see also discussion below).

The path loss model that we consider is the classical “power
law”: define the small-scale-averaged (SSA) path gain as the
instantaneous (local) channel gain averaged over the small-
scale fading, and the large-scale averaged (LSA) channel gain
as the SSA channel gain averaged over shadow fading. Then
the path loss is the inverse of the LSA channel gain. Then we
model the path loss on a dB-scale as

PL,,(d) =10-a-log,y(d) + B, (1)

and the variations of the SSA path loss around the mean is
modeled as a zero-mean log-normal distribution, so that on a
dB scale, it is described by a normally distribution random
variation N(0,0) from the mean-value line given by (1).
The standard deviation can be either a constant or a distance
dependent function:

o(d) = a-logyo(d) + b. (2)

Define now a weighted log-likelihood function

1
———=(PLy(d;)—PLg(d;))?
. 202( (di) a(di)) 3)

V2o

N,
LLF = w(d;)log
1=1



where N is the total number of data samples, o is the standard
deviation (std) of the distribution, w is the weight, PL,, is the
path loss model and PL, is the path loss data at distance d;
given in dB.

The path loss parameters are determined as the minimum
of the negative of the log-likelihood function as

arg min {~LLF} @)
or with o(d;) = a-log,(d;) + b:
arg min {—LLF}. o)
a,B,a,b

We note that in many papers, the determination of the path
loss parameters has not been done by joint minimization of
the log-likelihood function, but instead by first performing a
least-squares fit of the path loss Eq. (1), and then determining
a (distance-independent) o as the mean-square deviation from
the fit. This approach, while popular, gives slightly sub opti-
mum results. In any case, this distinction is not relevant for
the main point of this paper, namely the impact of the density
of measurement points.

We now analyze different weighting functions. We consider
four different approaches:

e a) equal weight to each data point. This is the default
solution, used in many previous papers. We stress that
while it was not recognized at the time, using all points
with equal weighting is in itself a form of weighting,
and it will bias the results. The weights are determined
by the placement of measurement points, which might
not be meaningful for any later system simulations that
use the model.

o b) equal weight to NV bins over link distance d. This is
an “intuitively pleasing” weighting, which gives slightly
better fit for both short and long distance that have
relatively few data points in measurements.

« c) equal weight to N bins over log,,(d). This weighting
is most closely aligned with a “least square” fitting on
a dB-vs-log,,(d) plot. Each equal-sized “bin” on the
log,,(d) axis obtains equal importance for the fitting. As
a consequence of this approach, we obtain a better fit for
short distances and worse fit for largest link distances,
compared to option b).

o d) equal weight to N bins over d?. This approach is
most appealing as the basis for system simulations with
uniform random “drops” (i.e., choice of mobile station lo-
cation) in a geographical area. Then the weights become
proportional to the number of MSs that will be dropped
in a particular distance bin. As a consequence, we obtain
a better fit with the largest link distances and worse fit
for short distances.

The weights w for (3) are inversely proportional to number

of data points in a bin:

1 N
-3 6
A ©
where NN, is number of data points in the bin and N; is the

total number of points. The fitting accuracy is improved for

TABLE I
LOS PARAMETERS FOR (1)-(2)
[Method [ o [ B ] o |
a 1.60 | 66.62 2.10
1.69 | 64.78 | 1.52-log(d)-1.23
b 1.55 | 67.48 2.36
1.67 | 64.88 | 1.54-log;y(d)-1.20
[ 1.60 | 66.56 2.00
1.68 | 64.93 | 1.45-logy(d)-1.17
d 1.46 | 69.58 2.53
1.49 | 68.83 | 1.07-log;y(d)-0.10
TABLE 11
NLOS PARAMETERS FOR (1)-(2)
[Method [ @ [ B | o ]
a 8.37 | -53.94 22.58
7.77 | -39.88 | 14.97-log,(d)-14.44
b 8.10 | -46.78 22.64
746 | -31.14 | 15.46-log;o(d)-15.93
c 7.81 -40.10 20.48
7.13 | -24.38 | 16.57-log;q(d)-18.95
d 8.11 | -47.24 24.26
7.71 | -37.07 | 15.03-log;,(d)-14.46

w(d;) > 1 and data points with w(d;) < 1 have reduced effect
on the fitting as compared to weighing option a) which has
the w(d;) = 1 for each point. In our examples, the number of
bins is selected as N = 30 for each weighing option.

In order to illustrate the distance dependent weights define:

W =Ny -w, )

where W is the apparent data point density, N, is number
of data points on a linear scale (or logarithmic etc.), and w
are the weights that are used in the weighted L L F'-equation.
The apparent data point density W averaged over 20 m is
presented in Fig. 2. The W is approximately constant over
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Fig. 2. Apparent data point density per 20 m in LOS and NLOS, i.e., the
fitting weights w multiplied by number of points averaged over 20 m. The
red lines (a) are the true data point densities.
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Fig. 4. Comparison of data and models for LOS with distance-dependent o.
Average of PLy,[dB] — PL4[dB] and std of the models and data over 20
m.

distance d, log;(d), and d? with weighing options b), ¢), and
d), respectively.

We are imposing as an additional constraint that the bins
with the smallest number of data points, in total including
about 2% of the total number of data points, are limited to
w = 1. This prevents giving huge weights to severely under-
sampled distance ranges with very small number of points
associated with high variance of the realizations from the
mean. The limits on number of bins and the definition of the
weights affect model matching results, but for simplicity and
brevity, these effects are not studied in this paper.
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Fig. 5. Comparison of data and models for NLOS with distance-dependent
o. Average of PLy,[dB] — PL4[dB] and std of the models and data over
20 m.

The path loss model parameter values with different weigh-
ings are presented in Tables I and I3 Examples of PL data
and fitting results are given in Fig. 3. In the LOS-case, the
model parameters « and /3 are quite similar for the different
weightings and the main differences are in the o values.
The « and [ with constant o models are different than
with the distance dependent o-models. This clearly shows the
importance of optimizing the power-law model (1) together
with the o-model.

In general, comparing the weighings a)-d) for both LOS and
NLOS, it can be noted that the c)-models shows the strongest
differences from the others. This means that the PL data for the
shortest link distances follow a slightly different distribution.
In cases when the relatively short link distances are important,
using these fits could improve PL-model accuracy.

Statistics of the difference between models and data (aver-
aged with a 20 m sliding window) are presented in Figs. 4-
5 for the distance-dependent o-models. In general it can
be observed that in the LOS-case, the models fit the data
better than in the NLOS-case. In LOS, the average difference
PL,,[dB]—PLy[dB] is close to zero for most of the distance
range, with all the weighing options, which indicates that the
LOS data fits the PL-model (1) very well. When analyzing the
original ray-tracing data, we see that the standard deviation
(std) of the path loss (std(PLg4[dB])) is increasing as a func-
tion of the distance; thus a distance-dependent model of the
shadowing variation provides better results. When a constant
o is used, the o of the PL models is selectively adjusted to fit
the standard deviation of the underlying raw data either for the
shortest distances or the longest, depending on the weighting
option (see Tables I and II). For example, the weighing option
c) makes o fit well to the std(PLg4[dB]) occurring at the

3Note also that the derived models are valid only within the distance range
of the underlying data (a point that seems obvious, yet is often forgotten in
the application of path loss models).
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Fig. 6. Simulation setup: (i) hexagonal grid of base stations, (ii) cell edge at
radius dp s /2, (iii) signal from base station with smallest PL and interference
from others, and (iv) nothing from BS that are too far away (no extrapolation).
If dipaq is the validity range limit of the PL-model then maximum distance
between base stations is defined as dps = (2/3)dmaz, as shown in the
illustrated geometry.
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Fig. 7. LOS probability.

shortest link distances; these values are smaller, so a smaller
o is fitted. The distance dependent o-models correctly model
the distance dependency of the standard deviation from the
local average path loss for most of the distance range.

IV. COMPARISON IN HEXAGONAL CELLULAR GRID

In this section the channel models are compared in terms of
prediction accuracy of signal level, interference level, and ca-
pacity in a hexagonal cellular grid simulation. The simulation
setup is illustrated in Fig. 6. The users are dropped randomly
inside the cell. The signal level from each base station is
calculated with the path loss models derived in Section III.
For comparison, data points with same distribution of link
distances are drawn from the path loss data.

The base station is either in LOS or NLOS based on LOS
probability. The same LOS probability is used for the ray
tracing model and for selecting the data points from the ray-
tracing data. This is done to avoid influencing the comparison
of the path loss fitting models to the reality by the accuracy of
the LOS probability model. Specifically, the LOS probability
is modeled by the model of 3GPP (3GPP TR 36.873 UMa,
without antenna height)

d
p(d) = min(1, —)(1 — e~V ®) Lot/ (@)

with limitations based on available ray-tracing data for com-
parison:
p(d) =1,d < ds ©)
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Fig. 8. Average signal and interference over 10 m as a function of distance
to the closest BS. Constant o with solid lines and distance dependent o with
dash lines.

p(d) =0,d > d (10)

where di =22 m, do = 61 m, d3 = 76 m, dy = 512 m. LOS
probability data and the model are illustrated in Fig. 7. Less
than 1% of the NLOS data are at distances less than ds and
less than 1% of the LOS data are at distances greater than
dy. Similarly the shortest simulated link distance is limited to
22 m, because less than 1% of the LOS data are at shorter
distances. The longest simulated link distance is limited to
622 m, because less than 1% of the NLOS data are at longer
distances.

We denote as the “signal level” S = —min(PL) the
strongest received power (i.e., we assume that each MS is
associated with the BS to which it has the smallest SSA path
loss), and the interference level is the sum of received signals
from all other base stations.

The capacity with interference-plus-noise Cjy are calcu-
lated as: (the unit for the capacity values is [bits/s/Hz])

Crny =logs(1+ SINR), an

where SINR is the signal-to-interference-plus-noise ratio.

Simulation results as a function of distance to the clos-
est base station are presented in Figs. 8-9. Here the dis-
tance between base stations in the hexagonal cellular grid is
400 m. The noise level corresponds to PL = 130 dB, e.g., if
PL = 130 dB then S = —130 dB and SNR = 0 dB. The noise
level of 130 dB is selected for this example so that the cell
averaged SNR and SIR are approximately equal.

The signal and interference level modeling accuracy is
presented in Fig. 8. In general, distant dependent o gives better
match. The weighing option c), which improves the model
fitting for the shortest distances, is good for predicting the
signal level at those distances. The weighing option c), with
the distant dependent o, predicts the average signal level very
well and also the interference level quite accurately for the
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Fig. 9. Average and standard deviation of Cn and over 10 m as a function of
distance to the closest BS. Constant o with solid lines and distance dependent
o with dash lines.

whole cell. However, option ¢) with distance independent o
is poor at predicting signal power and interference at larger
distances, as is to be expected from the definition.

The capacity with interference plus noise Cyy is affected by
both LOS and NLOS with both short and long link distances.
Therefore, the modeling accuracy of the average and standard
deviation of Cjy, in Fig. 9, can be considered as a good
measure of how much the differences in the models really
matter. Again, it can be noted that the distant dependent o
gives better match. Also it can be noted that the weighing
option c) usually outperforms others. The weighing option c)
with the distant dependent o gives the best match. This is
also related to the fact that average cell capacity is largely
determined by the very high capacities at the cell center.

The results in Figs. 8-9 show that the option a), with the
unintended distant dependent weighing, rarely gives the best
match. In general, the weighing should be chosen based on
the intended purpose of the model.

V. CONCLUSION

The typical path loss data is measured (or simulated) at
locations whose density is unevenly distributed over the link
distances. This can cause unintended bias in the path loss
model fitting, favoring those link distances with more data
samples. We present a path loss model fitting with distance
dependent weighing that provides better model fitting evenly
across the distances or selectively to improve accuracy for
the shortest or longest link distances. The criteria for the
weights should be adapted to the goals of subsequent system
simulations.

As an example, we discuss path loss models for 28 GHz
channels in an urban macrocellular scenario. The path loss data
are simulated with ray tracing with 11 different base station lo-
cations. The model parameters are given with different weight-

ings and the modeling accuracy is examined as a function of
the distance. It is shown that the modeling accuracy can be
improved for the weighted link distance range. The models and
the path loss data are compared with signal and interference
level analysis in a hexagonal cellular grid. It is shown that
by appropriate weighting the accuracy at cellular grid level
analysis can be improved. Another interesting insight is that
a distance-dependent modeling of the variance significantly
improves the fit between the raw ray-tracing results and the
model.

The results presented in this paper show that the presented
method can improve path loss modeling accuracy. It is shown
that even in the absence of any conscious weighing there is an
implicit weighting, that thus impacts the results. However, care
must be taken to choose the weights in a manner that most
closely reflects the later application of the path loss model.
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