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Abstract—This paper considers a fundamental issue of path
loss (PL) modeling in urban micro cell (UMi) environments,
namely the spatial consistency of the model as the mobile station
(MS) moves along a trajectory through street canyons. The work
is motivated by the observed non-stationarity of the PL. We show
that the traditional model of power law PL plus log-normally
distributed variations can provide misleading results that can
have serious implications for system simulations. Rather, the
PL parameters have to be modeled as random variables that
change from street to street and also as a function of the street
orientation. Variations of the PL, taken over the ensemble of the
whole cell (or multiple cells) thus consist of the compound effect
of these PL parameter variations together with the traditional
shadowing variations along the trajectory of movement. Ray-
tracing results demonstrate that ignoring this effect can lead to
a severe overestimation of the local standard deviation in a given
area. Next, a spatially consistent stochastic street-by-street (SbS)
PL model is established, and a parameterization for 28 GHz UMi
cells is given. The model correctly describes the PL as a function
of the street orientation as well as the large variance observed
for all the PL model parameters.

Index Terms—5G, channel model, millimeter-wave, short-
range communications, path loss, spatial consistency.

I. INTRODUCTION

Frequency bands above 6-GHz, including millimeter-wave
(mm-wave) bands, will play an important role in next-
generation wireless communications (5G) systems, mostly due
to the large amount of available bandwidth in this frequency
range [2], [3]. Millimeter-wave communication systems first
received attention in the 1990s. They did not gain momentum
at that time, both because of the high cost of chip man-
ufacturing for this frequency range, and the availability of
cheaper alternatives to increase the data rates for cellular
access. However, recent years have seen the emergence of
CMOS for mm-wave, enabling the low-cost mass production
of chips, and a renewed urgency in finding new spectrum for
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high-rate communications. This has led to renewed interest
in mm-wave frequency bands and systems [2]–[4]. Channel
models are an essential prerequisite for the design, simulation,
performance assessment, and deployment planning of all wire-
less communications systems [5]. For this reason, a number of
organizations, e.g., [6]–[9], are currently creating 5G channel
models applicable to frequency bands above 6 GHz.

The large scale attenuation a signal experiences between
transmitter and receiver, averaged over small-scale fading, is
called path loss (PL). It is the most fundamental aspect of a
channel model as it determines the distance range over which
communication can take place. Due to its importance, many
standardized PL models have been developed for indoor and
outdoor, e.g. [8], [10], [11]. In order to properly reflect reality,
PL models should be based on measurement campaigns, such
as [12]–[18], and/or calibrated ray tracing [19]–[21].

An aspect that is especially important for 5G models is
spatial consistency, i.e., the correct modeling of the joint
channel parameters (especially PL) at different locations, or
equivalently the behavior as the mobile station (MS) moves
along a track. More specifically, in this paper, we examine
the spatial consistency of PL as the MS moves along a
trajectory through street canyons in urban micro cell (UMi)
environments; UMi is one of the most important deployment
scenarios for mm-wave systems, since they are well suited
for short-distance communication with high density of users.
Traditional channel models, such as the ones used in 3GPP
[8], [10], mainly aimed to correctly describe the probability
density function of the PL as a function of the link distance.
System simulations were done by placing MSs at various
distances, and for each placement drawing the PL according
to the given probability density function. For such “dropping”
simulations, existing PL models work well. However, modern
systems, and in particular mm-wave systems, need to imple-
ment suitable multi-RAT (radio access technology) switching
and other functions that depend on the large scale evolution
of the PL as the MS moves along its route. As we will
show in this paper, the “shadowing variance” obtained from
traditional channel modeling can significantly overestimate
the signal variations along such a route, and thus provide a
misleading picture of the system performance. The reason for
this error lies in the fact that traditional methods commingle
variations of the PL along a route with variations between
different routes either within the same cell or between different
cells. Equivalently, we can say that the PL is non-stationary,
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i.e., the PL depends on the absolute location of the base
station (BS) and MS, rather than only on the distance between
them. Several papers have considered various aspects of PL
stationarity in the microwave regime. In [22], it is shown
that PL parameters in different cells (in the same type of
environment) can be different, and should be modeled as
random variables following a truncated Gaussian distribution;
furthermore, even the shadowing variance should be modeled
as a random variable. The work was later extended by [23]
to the indoor scenarios, again showing variations of the PL
coefficient and shadowing variance from building to building.
Recent work by one of the authors [24] has shown that in
an urban environment we should expect variations not only
from cell to cell but also from street to street. In [25], [26],
different PL slopes on different streets are observed in urban
environments. In [27], it is found that it could be beneficial
to add an intersection dependent loss parameter to a 5.9 GHz
NLOS path loss model for intersections. Non-stationarity in PL
parameters is observed in measurement results with multiple
radio frequencies ranging from 0.8 to 60 GHz in urban street
canyons in [16]. The frequency dependency is modeled, but
the observed variations representing different streets is not
modeled as they can not be identified reliably from the large,
but limited, measurement datasets.

In this paper, a novel street-by-street (SbS) PL model for
UMi environments is presented that fully takes into account
the PL non-stationarities. The PL is parametrized separately
for each street, and thus the model represents the local PL.
The model parametrization is based on a large calibrated
ray-tracing (RT) simulation dataset with a total of 11 BS
locations and over 60000 PL data points in an UMi street
canyon environment at 28 GHz.1 The model aims to represent
the most significant correlations between the parameters for
distance dependent PL and the shadow fading as well as the
most important geometrical parameters describing the street
orientation and the distances from the BS to the street corners
and to the MS.

The remainder of the paper is organized as follows: Sec-
tion II provides a review of standard path loss modeling
methods and the way their parameters are extracted from
measurements (or simulations). Section II-A introduces the
typical αβ- and CI models and an example of a deterministic
street canyon PL model [16] is introduced in Section II-B. In
Section III, the ray-tracing datasets and the parametrization
for the typical αβ- and CI models are given. The new SbS
PL model is given in Sections IV-VI. Section VII will bench-
mark the proposed SbS model with the αβ- and CI models
(parametrized in Section III) as well as with the deterministic
model of [16]. Finally, conclusions are given in Section VIII.

II. PATH LOSS MODELS

The local (instantaneous) channel gain, whose inverse is the
path loss, can be modeled as the product of three factors: (i) the
distance-dependent expected path gain, whose inverse is the

1While officially 28 GHz band is not part of the mm-wave band (30 GHz -
300 GHz) it is close enough that it is often considered part of it in the
literature.

expected path loss PL(d), (ii) a random variable representing
shadowing S, and (iii) a random variable representing small-
scale fading (we assume in the sequel that small-scale fading
is averaged out, e.g., through the use of a sliding window). In
other words, on a dB scale, the received power PRX can be
written as

PRX = PTX +GRX +GTX − PL(d), (1)

where GRX and GTX are the receiver (RX) and transmitter
(TX) antenna gains, respectively, and PTX is the transmitted
power. The path loss PL(d) can be written as

PL(d) = PL(d) + S. (2)

To simplify the discussion, we will henceforth use notation
suitable for a downlink scenario (BS as TX, MS as RX),
though of course, the PL model is equally valid for the uplink.

The shadowing is usually modeled as a log-normal process,
i.e., Gaussian distributed around the mean with a standard
deviation σ (again on a dB scale), and autocorrelation function
h(∆d) describing the correlation of S between two points
separated by distance ∆d. The autocorrelation function is
parametrized with a correlation distance dcor so that S is
considered correlated for locations separated by less than
the correlation distance. The most common autocorrelation
model is a decaying exponential function of the distance
separation [28], [29]:

h(∆d) = exp(−∆d/dcor), (3)

where ∆d is the distance separation between MS locations
in two-dimensional space, i.e., the xy-plane. Shadow fading
within the distance separation less than dcor has correlation
> 1/e ≈ 0.36. Many more detailed shadow fading correlation
models have been suggested, see [29] for a survey. We will
use the model (3) for further discussion in this paper, but note
that our methodology is just as applicable to more involved
shadowing models.

A. Typical αβ- and CI Models

The distance dependent expected path loss PL(d) is com-
monly modeled on a dB-scale with the so-called αβ-model,
e.g., [10], [30], [31],

PLαβ(d) = 10·α· log10(d/d0) + β, (4)

where α is the PL slope and d0 is the reference distance. This
reference distance can be chosen in various ways, e.g., the
smallest distance for which measurements exist, the Rayleigh
distance of the transmit antenna, or a fixed value such as 1 m.
The parameter β is the offset of the path loss fitting curve
at the reference distance. The close-in (CI) reference model,
e.g., [13], [14], [19], [20], [32], in which PLCI(d) is fixed to
the value of the free-space path loss (FSPL) at the reference
distance FSPL(d0), is given as

PLCI(d) = 10·n· log10(d/d0) + FSPL(d0), (5)

where n is the path loss exponent. The CI model expected PL
equation is a simpler one than the αβ-model as it has only
one free parameter. The reference distance is often chosen to

ammaster
Cross-Out

ammaster
Sticky Note
New paragraph

ammaster
Cross-Out

ammaster
Inserted Text
averaging with a



3

be 1 m. The parameters (α and β, or n) can be obtained as
a simple least-square fitting to an ensemble of measurement
points obtained from a large area. The σ can then be calculated
from the variations of the small scale averaged (SSA) path loss
around the αβ- or CI model.2

It is customary in PL evaluations that all PL data are
considered as part of the ensemble to which the fitting (4)
or (5) is done. In particular, in an urban cellular scenario all
the data from all the streets, and possibly from many cells,
are collected together for the dB-over-log10(d/d0)-fitting. If,
and only if, the PL and the shadowing statistics are stationary,
i.e., depend only on the distance between TX and RX, but not
on their absolute location, then the variance computed this
way is identical to the true shadowing variance, where we
define the true shadowing as the variations of the (small-scale
averaged) channel gain around its local mean. This implies
also that PL(d) be the same for every route. If the statistics
are not stationary, no such equivalence holds. In that case,
this deviation is different from the true shadowing, so we
henceforth call it the root-mean-square deviation, RMSD.

In this work, the typical αβ-model (or CI model) is con-
sidered fully parametrized when α, β, RMSD, and dcor (or
n, RMSD, and dcor) are known for both LOS and NLOS
conditions.3 Reference distance d0 = 1 m, in (4)-(5), and
the exponential autocorrelation function (3) are used. In Sec-
tion III, these models are parametrized for a 28 GHz UMi
dataset, and in Section VII used as examples of typical models
for the purpose of benchmarking against our model.

Various other PL model extensions and modifications of
the basic model have been proposed, for example (i) the
breakpoint model, in which PL(d) is characterized by a
slope α1 up to a breakpoint distance, and by a slope α2 at
distances beyond that [19]–[21], (ii) probabilistic LOS/NLOS
models [10], [13], [19], [20], in which separate fits according
to (4) or (5) are obtained for MS locations that are in LOS
or NLOS, respectively, and a distance-dependent probability
for being in LOS is used for each MS location during the
simulation, and (iii) distance dependent RMSD [15], [19],
[20]. All of these modifications, while important in their own
right, do not significantly impact our discussion below, and
in order to simplify notation, we will in this paper assume
the validity of the αβ-model (4) as the starting point for the
proposed SbS PL model in Section IV.

B. Deterministic Models

Besides the above models, various street canyon PL models
have been proposed, e.g., [16], [17], [33]–[37]. Some are based
on simplified ray tracing, e.g., [33], [34]. Also, models includ-
ing some geometrical parameters and statistical distributions
for the shadow fading have been proposed, e.g., [16], [17],
[35]. While some of these models include some geometrical
parameters, they are deterministic models without the random

2Note that an alternative formulation is possible; optimizing the log-
likelihood function [16], [30], [31]. This can provide slightly improved
results under some circumstances, but again does not impact the basic issues
discussed here.

3Some popular PL models ignore the correlation properties of shadow
fading (or RMSD).

variations seen in the presented PL-model parameters in this
paper.

In this paper we use [16] as an example of deterministic
28 GHz UMi street canyon PL model. It is a frequency-agile
path loss model for urban street canyons from 0.8 to 60 GHz
based on the ITU-R M.2135 UMi model [35]. The LOS model
is an extended ITU-R M.2135 model with expected PL before
breakpoint PLLOS1 and after breakpoint PLLOS2 at 28 GHz

PLLOS1(d) = 22 · log10(d/1 m) + 59.1, (6)

PLLOS2(d) = 40 · log10(d/d′BP ) + PLLOS1(d′BP ), (7)

and the breakpoint is

d′BP =
(hBS − 1 m)(hMS − 1 m)

0.0048 m
, (8)

where hBS is the BS height and hMS is the MS height. The
LOS shadow fading standard deviation is 2.66 dB. The NLOS
model is a simplified ITU-R M.2135 model with expected PL
at 28 GHz

PLNLOS(d1, d2) = PLLOS(d1) − 12.5 · nj+
10 · nj · log10(d2/1 m) + 17.1,

(9)

where nj = min(2.8 − 0.0024 · d1/1 m, 1.84), d1 and d2 are
the distances from the BS to an intersection of streets and
from the MS to the intersection. The zero-point of distance d2
is in the middle of the intersection [35], i.e., the street corner,
and the first NLOS point, is at d2 = W/2, where W is the
street width. The NLOS shadow fading standard deviation is
2.94 dB. Further details of this model can be found in [16],
[35]. This model is used as an example of a deterministic
street canyon model for the purpose of benchmarking against
our model in Section VII.

III. SIMULATED CHANNEL DATA AND TYPICAL MODEL

A. PL Data

The typical αβ- and CI models (Section II-A) and the
SbS model (Section IV) are parametrized based on calibrated
28 GHz ray-tracing simulations in the urban street canyon
environment of New York City (NYC), NY, USA. The main
motivation to use ray tracing, instead of channel measure-
ments, is the ability to obtain much larger datasets than would
be practically feasible to measure. The dataset has in total
60610 data points and 11 BS locations. The environment can
be described as street canyon UMi environment with BS height
of 10 m above ground, which is less than the height of the
surrounding rooftops. The MS locations were placed at height
of 1.5 m above the ground on a rectangular grid within a
590 m × 450 m area, with 5 m × 5 m meter gridpoint
spacing, only considering outdoor MS deployment. The 3D
building database covers an area that is about 100 m larger
in every direction than the area covered by the gridpoints;
thus reflections from buildings outside the coverage area
are included. For simplicity, scattering objects such as cars,
people, signs, and billboards are not considered. The typical
building height in this area is from 20 to 50 m and street width
is from 15 to 30 m.
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The parameters for ray-tracing simulation and environment
description are set to the values used in [19], [20]. All
paths are modeled by reflection, diffraction, and penetration
based on the geometrical optics (GO) and uniform theory of
diffraction (UTD) using the ray-tracing software Wireless In-
site by REMCOM [38]. In each ray, at most twelve reflections,
two penetrations, and a single diffraction are considered as
the attenuation by multiple diffractions and combination of
reflection and diffraction at mm-wave frequencies is severe
[39]. In the geographical model, all buildings and the ground
are assumed to be made of concrete and wet earth, respectively
[40]. At each combination of BS and MS, at most 40 rays
and their signal power, phase, propagation time, direction of
departures (DoDs) and direction of arrivals (DoAs) for both
azimuth and elevation are collected in descending order of
received power within 250 dB per-path path loss. The received
power of each MS point is calculated by summing all path
powers, and each sample is categorized as LOS or NLOS
according to whether visual LOS exists.

The results of the ray tracing are validated by a compa-
rison with measurements in [19]. The pointwise comparison
between the measurement and ray-tracing simulations shows
some deviations. However, the path loss models derived from
these values show reasonable agreement [19]. This is an
effect commonly observed in ray tracing, and could only
be eliminated by a much more detailed database including
small objects. A good statistical match, i.e., similar PL model
parameters, is commonly seen as validation of the PL model
parameters despite the deviations in the pointwise comparison
between the measurement and ray tracing. The SbS PL model,
developed in this paper, describes the PL statistics on a
street-by-street level. A proper validation of the ray-tracing
results by measurements on a street-by-street level requires
considerably larger measurement campaigns, which are unfea-
sible with currently available high-dynamic-range mm-wave
channel sounders. Nevertheless, in this paper this ray-tracing
PL data is used to develop the new SbS PL modeling principle,
although the particular parametrization needs further validation
in future.

The measurement results used in the validation have highest
measured PL at about 150 dB [19]. Therefore, in this work
PL values above a 160 dB-limit are not used as such high
values are not validated. With this limit there are 29755 data
points, i.e., about half of the original 60610 data points are
now considered to be in outage.

Ray-tracing simulations of Daejeon, Korea, are used as an
example of another similar environment [1], [19]. The Daejeon
dataset has one BS location. The BS height is 16 m, typical
building height is from 10 to 15 m, and typical street width
is about 10 to 20 m. The BS is placed below the building
rooftop level of a 25 m high building. The MS locations were
placed at mobile heights of 1.5 m above the ground on a
1 m × 1 m rectangular grid within a 200 m × 200 m area,
only considering outdoor MS deployment. As in the case of
the NYC building database, the MS deployment area is smaller
than the building database area. This dataset is only used to
validate the model derived from the NYC simulations. Also,
this smaller dataset is used to illustrate the propagation physics
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that motivated our SbS PL model [1].

B. Propagation Physics

We now use ray-tracing results from the Daejeon dataset to
illustrate the points made in Sections I-II, and to motivate
an alternative PL model based on simulated propagation
physics [1]. Fig. 1 shows the PL in UMi as a function of MS-
BS distance for a NLOS scenario. Ignoring for the moment
the color coding, we can see that a linear fit with α ≈ 4
(n ≈ 3) describes the mean. We also see that the deviation
of the measured points around this mean increases drastically,
from ±8 dB at 20 m to ±30 dB at 200 m. If we assume a
distance-independent standard deviation (as is done in existing
PL models), the standard deviation is about 15 dB with both
the αβ- and CI models. As we will see below, this deviation is
different from the true shadowing, therefore, we call it RMSD.

Let us now turn to a more local interpretation: different
streets are signified by different colors in Figs. 1-2. Thus, an
MS moving along a trajectory within one street would only
experience PL of that particular color. We can clearly observe
that different streets have greatly differing PL coefficients:
e.g., points on the red street (NLOS2) show a negligible slope
while the dark blue street (NLOS8) corresponds to an almost
vertical line in Fig. 1. These effects can be easily explained
by the dominant propagation physics. The red area is part of
the street that also contains LOS components over the roof
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of a relatively low building; this means that waves are very
efficiently coupled into this area, typically via one or more
reflections. The wave guiding effect ensures that the effective
PL slope is even less than in a free-space propagation scenario
(remember that the PL exponent for a perfect waveguide is 0).
Thus, even though points in the red area have a distance from
the BS ranging from 40 m to 200 m, the PL hardly changes.
Next, note the blue area, NLOS3. This street is parallel to the
red street. However, the coupling angle is slightly different,
and the building structures are such that only a small area is
in LOS. For this reason, the coupling into the waveguide is
less efficient, and waves have to undergo a large number of
reflections on their way to the far-away points in the canyon.
Due to the lossy nature of the waveguide walls, the blue
points show a significantly higher slope than the red points.
We finally observe the dark blue points, NLOS8. All points
in that street are at approximately the same distance to the
BS. Waves mostly propagate from the BS, through the red
and blue streets, and from there are coupled into the dark-
blue street. Points that are midway between the blue and red
street, either require a diffraction with a large angle (and thus
high loss) or a diffraction with a smaller angle followed by
multiple reflections. Points near the junction between dark blue
and red (or blue) street have a much smaller loss. Thus, we see
a wide range of PL, even though the Euclidean distance from
BS to MS hardly varies. This provides us with the important
insight that Euclidean distance between the BS and MS is not
necessarily a dominant parameter of the PL. Similar, though
slightly less pronounced, effects can be observed in all the
other vertical streets. This indicates that the street orientation
(relative to the BS position) has an important impact on the
PL parameters.

Relating these physical insights now to the modeling ap-
proach of Section II, we find that the PL statistics are
extremely non-stationary. The difference in PL between two
points clearly depends not only on the distance between the
points but also on the absolute position - most notably, which
street the two points are in. We also see that the reason for
the large deviation between “mean” PL of the cell, and the
locally simulated points, is mostly due to the fact that different
streets have different slopes. This also explains the distance
dependence of the RMSD. It is not the actual shadowing
along a trajectory that increases in variance, but rather the
different slopes of the expected PL in each street cause a
stronger variation between the smallest and largest PL at larger
distances. For LOS, on the other hand, the difference is much
smaller; the LOS (green) areas of both the “horizontal” street
and the “vertical” street (in Fig. 2) lead to almost identical PL
distribution.

C. Typical αβ- and CI Model Parameters

The parameters for the typical αβ- and CI model parameters
are derived for Daejeon and NYC datasets. The resulting 28
GHz UMi PL model parameters for LOS and NLOS are
presented in Table I. The number of data points in the NYC
dataset, with PL < 160 dB, is 5343 and 25512 in LOS and
NLOS, respectively. The maximum link distances are about

TABLE I
PARAMETERS FOR THE TYPICAL αβ- AND CI MODELS: 28 GHZ UMI.

α β n RMSD dcor

NYC LOS αβ 1.44 68.8 - 2.11 17
NYC NLOS αβ 3.01 60.2 - 15.2 86

NYC LOS CI - - 1.80 2.51 30
NYC NLOS CI - - 2.96 15.2 86

Daejeon LOS αβ 1.79 63.6 - 0.56 8
Daejeon NLOS αβ 4.16 34.8 - 14.6 50

Daejeon LOS CI - - 1.91 0.64 15
Daejeon NLOS CI - - 2.88 14.8 50

600 m. The number of data points in the Daejeon dataset,
with PL < 160 dB, is 5099 and 5465 in LOS and NLOS,
respectively. The maximum link distances are about 200 m.
Comparing the parameters for NYC and Daejeon, we see that
they are quite similar, especially with CI model.

A very large RMSD ≈ 15 dB is found for NLOS.4 As
pointed out in the previous section, and in our conference
paper [1], the large NLOS RMSD is mostly due to differences
between PL on different streets rather than the true shadowing
being so large. Similarly, although to a lesser extent, the LOS
RMSD (σ = 2.11 dB) is partly due to differences between
streets.

Analyzing the 11 BS locations in NYC separately we
observe different PL parameters for each BS location. For
example, the NLOS path loss slope α varies between 2 and
5, the RMSD is between 12 and 18 dB, and the RMSD
correlation distance is between 28 and 50 m. In LOS, α varies
between 1.3 and 1.8, the RMSD is between 1.2 and 3 dB,
and the RMSD correlation distance is between 8 and 45 m.
The CI model PL exponent n is quite stable due to the fixed
reference point at 1 m, but the RMSD and RMSD correlation
distance varies as much as with the αβ-model. This clearly
shows the non-stationarity of the PL parameters also from cell
to cell and is consistent with the findings of [22]. However,
the current paper is focused on the street-by-street level model
and therefore the variations between BS locations are outside
its scope.

IV. STREET-BY-STREET PATH LOSS EQUATIONS

As a first step in our modeling, we extract the distance
dependent expected path loss PL(d) and shadow fading
parameters separately for each street or part of a street. The
same street can be, e.g., partly in LOS and partly in NLOS, or
divided into two NLOS areas. In this context we use the word
street for any partition of the urban street grid, including, e.g.,
park or an open area. For example in the case when the BS
is located at the center of an intersection of two streets there
are four LOS streets pointing away from the BS.

In LOS, the distance is defined, just as in the traditional
model, as the Euclidean distance between BS and MS. In
NLOS, the distance is measured along the street canyons as the
total distance between BS and MS approximately following the

4This is partly because of the relatively high simulated PL levels up to
160 dB. In fact, both of the ray-tracing datasets include PL values up to
220 dB, and if all data points are included, the NLOS RMSE would be over
20 dB for both datasets and both models.
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dominant propagation mechanism, i.e., shortest route favoring
LOS areas and minimizing the number of corners.5 More
discussion and illustration on how a street grid is divided into
LOS and NLOS streets is given in Section V.

For a given BS location, we now index the streets according
to the number of sharp corners the signal has to turn in order
to reach the MS. The LOS is n = 0 and the NLOS street is
n = 1. Furthermore, there might exist a NLOS streets with
n = 2 from which the shortest distance to LOS goes around
two street corners. In a general case, the SbS PL equation
is written for street n with the known PL equation for the
previous street n − 1 that might be a NLOS or LOS street.
Finally, we note that moving from a street with index n − 1
to index n incurs a corner loss. In our model we describe
this loss as a jump in the expected path loss, though in reality
of course there is a smooth transition related to the specifics
of the propagation process that couples the radiation into the
street.

Let us then first write the typical αβ-PL model for NLOS
street n using corner loss ∆n defined in dB as:

PLn(dn) = 10 · αn · log10(dn/1 m) + βn. (10)

∆n = PLn(dc) − PLn−1(dc), (11)

∆n = 10 · αn · log10(dc/1 m) + βn − PLn−1(dc). (12)

Substituting βn from (12) into (10) we get the PL-model for
NLOS street n

PLn(dn) = 10 · αn · log10(dn/dc)

+ ∆n + PLn−1(dc),
(13)

where ∆n is corner coupling loss at the corner of street n, dn
is the total distance from the BS to the MS along the street
canyons, dc is the total distance from the BS to the n-th corner.

In order to maintain meaningful physical interpretation of
the corner coupling loss and PL slope, additional conditions
are enforced:6

∆ ≥ 0, (14)

α ≥ 0. (15)

Similar formulations for LOS give:

PL(d) = 10 · α · log10(d/1 m) + β. (16)

PL(d) = 10 · α · log10(d/1 m) + ∆ + FSPL(1 m), (17)

where ∆ is an offset vs. free space path loss (FSPL) at 1 m
reference distance. Unlike the NLOS case, the LOS-∆ does
not have a clear physical meaning and it should be seen only
as a fitting parameter; in one variant of the model, it can be
forced to 0. In addition to the parameters in (13) and (17), the
shadow fading standard deviation σ and correlation distance
dcor are needed for all LOS and NLOS streets.

5In this work we do not assume that the path of dominant propagation
mechanism is known. Alternatively, if such information is available, NLOS
streets can be defined along such paths.

6Negative α in NLOS is in fact physically possible if strong propagation
path(s) do not follow the shortest route. As negative α can cause unphys-
ically low PL, the PL on streets with decreasing expected value of PL are
approximated with α = 0.

0 100 200 300 400 500 600

X [m]

0

100

200

300

400

500

600

Y
 [m

]

LOS

NLOS

NLOS2

BS

Fig. 3. MS locations in LOS (blue), NLOS (red), and outage (grey), i.e.,
location with PL > 160 dB. The BS is shown in green. One LOS street,
NLOS street, and NLOS street behind two corners, i.e. NLOS2, are chosen
as examples (green arrows). The thin black arrows show the directions of all
the NLOS streets and the dash line arrows show the NLOS2 streets.

V. STREET-BY-STREET MODEL PARAMETRIZATION

We now describe SbS PL model parametrization by means
of examples of a LOS street, a NLOS street, and a NLOS street
behind two corners, called NLOS2, see Figs. 3-4. Fig. 3 shows
a map of MS locations for one of the 11 BS locations in the
NYC dataset (see Section III and Fig. 9). The locations are
divided into LOS, NLOS, and outage locations, i.e., NLOS
locations with PL > 160 dB. The exact PL is not known
for the outage location and, for simplicity, are excluded from
the analysis.7 The BS coordinates are (xBS, yBS, zBS) and
the MS coordinates are (xMS, yMS, zMS). The parametrization
starts with the LOS streets. In this case, there are three LOS
streets within the simulation area: streets going +y- and ±x-
directions from the BS. The NLOS locations are divided into
NLOS and NLOS2 streets, as illustrated in Fig. 3. Firstly, every
street corner from a LOS area begins an NLOS street. The
NLOS2 streets are then the streets starting from an NLOS
street.8 After this, almost all points are assigned to a street
(or two, in case of intersections) and the rest of the data is
excluded due to small sample size of such areas.

Lets examine more closely one series of LOS, NLOS, and
NLOS2 streets (shown with green arrows in Fig. 3). The PL
values and the fitted models are presented in Fig. 4. The
parametrization goes step-by-step starting from the BS as
follows:

1) LOS: This LOS street includes all LOS MS locations
with xMS > xBS. The distance d for (17) is the
Eucledian distance between the BS and the MS loca-
tions. The model (17) is fitted with least-square error
fitting and the resulting parameters are: α = 1.6 and
∆ = 5.9. The variation from the expected PL model,

7The data from the outage locations could be taken into account as in [30].
8In general, there are a few optional routes from BS to a NLOS2 street

through different NLOS streets. In this paper, NLOS2 street starts from the
intersection closest to the BS.
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Fig. 4. PL and fitted PL models for the three chosen examples (BS and MS
locations illustrated in Fig. 3).

i.e., shadow fading, is parametrized as shadow fading
standard deviation σ = 1.2 and correlation distance
dcor = 7.2 m.

2) NLOS: This street corner is dc = 71 m away from
the BS. The distance dc is calculated only from x- and
y-coordinates. The LOS street PL model at the street
corner gives PLn−1(dc) = 97 dB. The distance along
an NLOS street, dn in (13), is approximated as dc plus
the difference of the y-coordinates of the MS and the
corner. Fitting the model to this street gives: α = 6.2,
∆ = 0, σ = 5.9, and dcor = 7.3 m. The corner angle
θ, as defined in Fig. 3, is ≈ 52◦. The dc and θ are
used in Section VI to model the dependence of the PL
parameters on these geometrical parameters.

3) NLOS2: The street corner is a total of dc = 93 m away
from the BS, which is the combination of the 71 m plus
22 m along the NLOS street - we stress again that this
distance is different from the Euclidean distance. The
NLOS model gives PLn−1(dc) = 104 dB at the street
corner. The distance along a NLOS street, dn in (13)
is now calculated as dc = 93 m plus the difference of
the x-coordinates of the MS and the corner. The model
fitting gives α = 1.1, ∆ = 17, σ = 11, and dcor =
15 m. The corner angle between the NLOS street and
the NLOS2 street is θ = 84◦.

The resulting street-by-street parametrization of the 11 BS
locations in the NYC dataset give the parameter statistics used
for the model. In total 28 LOS, 108 NLOS, and 56 NLOS2

streets are parametrized and the statistics are presented in
Table II. In addition to mean, standard deviation, minimum,
and maximum values for α, ∆, σ, and dcor, also probability
of zero values p(0) are given for α and ∆. Streets with less
than 25 MS locations are not included. Also, two LOS streets
are excluded as outliers, due to abnormally large dcor.9

These parameter statistics clearly show that the RMSD
variations of the typical αβ- and CI models (Table I) are in
most cases much larger than the signal variations along a route

9Abnormal values are excluded due to their disproportionately large effect
on the statistics.

TABLE II
PARAMETER STATISTICS: MEAN, STANDARD DEVIATION, MINIMUM,

MAXIMUM, AND PROBABILITY OF A ZERO VALUE p(0).

LOS NLOS NLOS NLOS2

θ < 75◦ θ ≈ 90◦

α mean 1.4 3.6 14 11
std 0.21 3.2 13 17
min 0.94 0 0 0
max 1.73 11 54 112
p(0) 0 0.13 0.01 0.20

∆ mean 8.4 4.4 17 8.3
std 3.3 4.9 10 9.1
min 1.3 0 0 0
max 15 15 35 38
p(0) 0 0.39 0.05 0.21

σ mean 1.2 4.9 8.2 7.5
std 0.44 2.5 2.8 2.9
min 0.47 1.1 1.7 1.36
max 2.3 9.3 22 15

dcor mean 7.2 6.0 7.8 8.7
std 3.7 4.5 4.4 7.8
min 1.9 0.08 0.09 0.09
max 18 17 22 43

of the MS. Again, this comparison confirms the observation
in Section III-B, that the typical model RMSE deviation is
different from the true shadowing along a trajectory. Especially
in NLOS the PL behaves radically differently on different
streets, as shown by the large standard deviations of the param-
eters. The wide range of the PL parameters clearly motivates
modeling the PL behavior with statistical distributions in order
to capture the observed range of the parameter statistics.

VI. STREET-BY-STREET PATH LOSS MODEL

The SbS PL model describes how to generate the PL-
equation parameters (α, ∆, σ, and dcor) for the LOS, NLOS,
and NLOS2 streets as presented in Table III. These equations
are formulated based on cross-correlations between the pa-
rameters, and in the NLOS cases also with the geometrical
parameters dc and θ. Only correlations > 0.50 (or < −0.50)
are modeled, otherwise the parameters are assumed to be
independent. The cross-correlations between the parameters
are used only to identify which parameters need to be modeled
as a function of each other. While the exact approach would
be to directly generate correlated Gaussian parameters, for
simplicity we use a sequential approach. The parameters are
generated in the following order: (i) α, (ii) ∆, (iii) σ, (iv) dcor.
The latter parameters are allowed to be a function of the earlier
parameters. Finally, there is one simple equation for each of
the four parameters that approximate the parameter statistics
in Table II and the identified strong cross-correlations.

A. LOS

The cross-correlation matrix of the LOS parameters is
presented in Table IV. Two strong correlations are observed;
between α and ∆ and between σ and dcor. As the cross-
correlation between α and ∆ is close to −1, the ∆ is modeled
as a simple linear function of α. The LOS street-by-street PL
model equations are presented in Table III, where the X are
independent random variables following a truncated normal
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TABLE III
THE STREET-BY-STREET PATH LOSS MODEL PARAMETER EQUATIONS

LOS
α = 1.4 + 0.21 ·Xα

∆ = 30− 15 · α
σ = 1.2 + 0.44 ·Xσ

dcor = 7.1 + 4.3 · σ + 3.2 ·Xdcor
NLOS, θ < 75◦

α = 0.92 + 0.093 · θ + 1.6 ·Xα
∆ = 3.6 + 4.7 ·X∆

σ = 4.9 + 2.5 ·Xσ
dcor = 5.8 + 4.6 ·Xdcor

NLOS, θ ≈ 90◦

α = −2.3 + 0.089 · dc + 8.2 ·Xα
∆ = 17 + 9.7 ·X∆

σ = 8.1 + 2.8 ·Xσ
dcor = 7.6 + 4.2 ·Xdcor

NLOS2

α = 12 + 12 ·Xα
∆ = 9.0 + 9.5 ·X∆

σ = 7.6 + 2.8 ·Xσ
dcor = 8.5 + 7.1 ·Xdcor

TABLE IV
LOS: CROSS-CORRELATIONS. α AND ∆ ARE VERY STRONGLY
CORRELATED AND σ AND dcor ARE STRONGLY CORRELATED.

α ∆ σ

∆ -0.95
σ -0.15 0.08
dcor 0.07 -0.09 0.52

0.8 1 1.2 1.4 1.6 1.8 2
0

10

20
NYC
Daejeon
model

Fig. 5. LOS; ∆ and α are very strongly correlated and therefore ∆ is modeled
as a simple function of α without any variation from the linear line.

distributions N(0, 1) representing the variation from average
values. ∆ and σ are in dB and dcor in meter. The α, σ, or
dcor are not allowed to be negative, i.e., truncated normal
distributions are used.10

The α and ∆ values from the Daejeon and NYC datasets
are presented in Fig. 5. Fig. 5 clearly demonstrates the
strong cross-correlation between these parameters. Also, ex-
ample results from the model equations are presented. The
cross-correlation matrix from the model output gives cross-
correlation of −1 between α and ∆, 0.49 between σ and dcor,
and zero for others.

B. NLOS

The NLOS streets are divided into two groups based on
the corner angle of (i) θ < 75◦ and (ii) θ ≈ 90◦. The
second group includes all NLOS streets with θ from 75◦ up

10These distributions can be truncated either at zero, as done in this paper,
or alternatively with the minimum values observed in the data.

0 20 40 60 80 100
0

20

40

60
NYC ( <75°)
NYC ( 90°)
NYC ( =0)
Daejeon ( <75°)
model ( <75°)
model ( 90°)

linear fit to NLOS with  < 75°

Fig. 6. The NLOS streets are divided into two groups, θ < 75◦ and θ ≈ 90◦,
based on the behavior of the PL slope α as a function of the corner angle θ.
With θ < 75◦, α is strongly correlated with the θ.

TABLE V
NLOS WITH θ < 75◦ , THE STRONG CROSS-CORRELATION BETWEEN α

AND θ IS MODELED.

α ∆ σ dc θ

α -0.13 0.86
∆ 0.03 -0.21 0.33
σ 0.41 0.15 -0.30 0.33
dcor 0.23 -0.20 0.29 -0.35 0.18

to about 100◦. NLOS streets with θ far greater than θ ≈ 90◦

are not present in the NYC (or Daejeon) simulation areas.
These streets are divided into these two groups based on the
difference in behavior of the α as a function of θ, shown in
Fig. 6. The NLOS α and θ values from the Daejeon and the
NYC datasets are presented in Fig. 6, together with examples
of the model generated with the same geometrical parameters.
Similarly α as a function of the distance from the BS to the
street corner dc is presented in Fig. 7. As shown in Figs. 6 - 7,
the model approximates the parameter distributions well. All
the comparisons with the data and the model are calculated
with the same distributions of the geometrical parameters.

The cross-correlations between α, ∆, σ, dcor, dc, and θ
are shown in Tables V - VI. The streets with α = 0 are not
used to calculate these correlations nor to derive the following
equations for NLOS. The exclusion of these streets is justified
by differences in the parameter distributions between streets
with α = 0 and α > 0, and the relatively small sample size
of streets with α = 0. The inclusion of the streets with α = 0
would create correlations that would be due to only one or two
streets.11 Finally, there are 27 NLOS streets with θ < 75◦ and
76 with θ ≈ 90◦ that are used to derive the model equations.

The cross-correlations show that α is a function of corner
angle θ when θ < 75◦ and a function of the distance to the
corner dc when θ ≈ 90◦. In both cases all other parameters
have relatively low cross-correlations and are modeled as
independent random parameters.

The NLOS street-by-street PL model equations are pre-
sented in Table III. Truncated normal distributions are used for
σ and dcor to ensure non-zero positive values. To be consistent
with (14)-(15), negative α and ∆ are replaced with zeros. In

11Streets with ∆ = 0 are included despite having a similarly low sample
size since the streets with ∆ = 0 fit well the same distributions are streets
with ∆ > 0.
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TABLE VI
NLOS WITH θ ≈ 90◦ , STRONG CROSS-CORRELATION BETWEEN α AND dc

IS MODELED.

α ∆ σ dc θ

α 0.76 -0.11
∆ -0.24 -0.00 -0.05
σ 0.14 0.44 0.38 -0.20
dcor -0.20 0.10 0.02 -0.08 -0.10
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60
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NYC ( 90°)
NYC ( =0)
Daejeon ( <75°)
model ( <75°)
model ( 90°) linear fit to 

NLOS with 
  90°

Fig. 7. NLOS; with θ ≈ 90◦ α is strongly cross-correlated with the distance
from the BS to the corner dc.

case of θ < 75◦ the model gives 6% and 15% of α = 0 and
∆ = 0, respectively. In case of θ ≈ 90◦ the model gives 0%
and 2% of α = 0 and ∆ = 0, respectively. These probabilities
match quite well the values in Table II. The cross-correlations
between parameters can be calculated from the parameters
generated with the model equations using the distributions of
the geometrical parameters from the parametrized streets. The
model replicates all the modeled strong cross-correlations in
Tables V - VI with better than ±0.05 accuracy.

The relatively low α for NLOS with θ < 75◦ clearly
illustrates the selection bias for the typical model with the
selection of one (or a few) simulation (or measurement) BS
location. If the BS is placed in the middle of the intersection,
then the NLOS streets with theta θ < 75◦ would be missing
and the average α, and average PL, would be higher in NLOS.
The SbS model does not suffer from this selection bias as these
streets are modeled separately.

C. NLOS (n = 2)

The cross-correlations between the parameters of the
NLOS2 streets behind two corners (n = 2) are presented in
Table VII. Similarly to the case of the normal (n = 1) NLOS
streets, the streets with α = 0 are not used to calculate the
correlations or to parameterize the model equations. Therefore,
57 out of the 71 NLOS2 streets were used, since 14 resulted
in α = 0. The NLOS2 parameters are not strongly correlated
with each other. None of the parameters are correlated with
the corner angle to the NLOS street θn−1 nor with the corner
angle from the NLOS street to the NLOS2 street θn.

The NLOS2 street-by-street PL model equations are pre-
sented in Table III. Negative α and ∆ are replaced with zeros
and the σ and dcor distributions are truncated to ensure positive

TABLE VII
NLOS STREETS BEHIND TWO CORNERS.

α ∆ σ dc θn−1 θn

α 0.47 -0.45 0.12
∆ -0.15 0.02 -0.18 0.22
σ -0.16 0.45 0.03 -0.05 0.26
dcor -0.29 -0.01 0.40 -0.17 0.04 0.19
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60
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model

Fig. 8. NLOS2 streets behind two corners. α as a functions of the total
distance from the BS to the corner dc.

values. The model generates about 7% with α = 0 and 16%
with ∆ = 0. The NLOS2 street α and dc values from the
Daejeon and the NYC dataset are presented in Fig. 8, together
with examples of the model generated for same geometrical
parameters. As there are no strong correlations, the model
approximates all the cross-correlations with zeros. Therefore,
the model, e.g., underestimates the correlation between α and
dc. This results from the limit of > 0.50 (or < −0.50) used
to determine whether parameters are modeled as independent
random parameters.

D. Unrealistic Combinations of Parameters

Sometimes the developed SbS model can produce unreal-
istic combinations of the PL equation parameters α, ∆, and
σ in NLOS or NLOS2, and thus, unphysical PL values. Two
such examples are recognized. Firstly, while it is true that
sometimes the expected PL in NLOS is nearly as low as
in LOS, such cases always also have small shadow fading
variation. Therefore, the combination of large σ with small α
and ∆ should be avoided or else NLOS PL can occasionally by
clearly lower than in LOS. This requirement can be formulated
as12

σ

α+ ∆ + 1
≤ C1, (18)

where C1 is the largest observed value in the dataset for the
given ratio after a few of the largest values are ignored as
outliers. The “+1” is needed to avoid dividing with zero. The
C1 limits are 0.4, 1.5, and 4.1 in NLOS with θ < 75◦, NLOS
with θ ≈ 90◦, and NLOS2, respectively.

Secondly, high PL values are in general associated with
large variations as a function of the distance. Therefore, the

12These ratios have no physical meaning and are used only as numerical
tests.
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TABLE VIII
DAEJEON STREET-BY-STREET MODEL PARAMETERS.

α ∆ σ dcor n θn dc

LOS1 1.8 1.7 0.49 8.5 - - -
LOS2 2.1 4.3 0.59 3.2 - - -

NLOS2 1.1 8.1 3.1 2.3 1 40 -
NLOS3 5.9 0 6.5 5.8 1 40 -
NLOS4 11 0 7.4 2.5 2 - 71
NLOS5 12 0 9.5 1.7 2 - 109
NLOS6 19 10 5.7 1.8 2 - 141
NLOS7 0 21 7.1 2.2 2 - 177
NLOS8 4.3 4.1 5.9 1.9 2 - 111

combination of small σ, small α, and large ∆ should be
avoided. This requirement can be formulated as12

∆ + 1

α+ σ
≤ C2, (19)

where C2 is the largest observed value in the data set for the
given ratio after a few of the largest values are ignored as
outliers. Again, the “+1” is needed to avoid zero. The C2

limits are 2.5, 1.9, and 1.9 in NLOS with θ < 75◦, NLOS
with θ ≈ 90◦, and NLOS2, respectively. These additional
conditions are applied in the comparisons of the data and the
model in Sections VI-A - VI-C and in the given simulation
example in Section VII.

E. Comparison Between Daejeon and NYC Datasets

Only the 11 BS locations from the NYC dataset are used
to parametrize the SbS model. Also the streets in the Daejeon
dataset, with only one BS, are parametrized for comparison.
The SbS model parameters for the Daejeon dataset are pre-
sented in Table VIII. The LOS and NLOS areas are shown in
Fig. 2. The LOS area is divided into two LOS streets, called
LOS1 with yMS > yBS and LOS2 with yMS < yBS . NLOS1
is not parametrized due to relatively small area. There are two
NLOS streets with θ < 75◦, NLOS2 and NLOS3, and five
NLOS2 streets, NLOS4 - NLOS8. The parameters from the
Daejeon streets are shown with different markers in Figs. 5 - 8.
The parameter statistic from the Daejeon dataset in Table VIII,
and from the NYC dataset in Table II, can be compared to
see if these two environments are similar.13 The parameter
distributions match quite well14 with the only exception of
larger α and smaller ∆ values in LOS streets in Daejeon.
Comparison of a few examples from the smaller Daejeon
dataset to the larger NYC dataset aims to see if the parameters
could be samples from a similar probability distribution. The
similarity of the parameter distributions between the Daejeon
and the NYC dataset indicates that the proposed SbS model
principle is usable also in different urban UMi environments.
Further study is needed to derive parametrization for vari-
ous environments and to study how the differences, e.g., in
building height, street width, BS height, etc., might affect the
parameter distributions and cross-correlations.

13Comparison can be performed only for LOS, NLOS (with θ ≈ 40◦), and
NLOS2.

14Assuming normal distribution, the 95% confidence interval is given by
the mean ±1.96 times the standard deviation.

0 200 400 600

X [m]

0

100

200

300

400

500

600

700

Y
 [m

]

BS3

BS5

BS4

BS8
BS9

BS10

BS11

BS7

BS6

BS2

BS1

Fig. 9. Simulation route on the NYC map and the 11 BS locations. The route
is marked with black dash line. The route starts close to BS8 and ends close
to BS10. Blue and red areas are the MS locations. Only outdoor MS locations
are simulated. Blue areas are in LOS to one or more BS and red areas are
in LOS to none of the 11 BSs. Note that the BS3 is outside the MS location
deployment area in the ray-tracing but it is within the larger building database
area.

VII. SIMULATION EXAMPLE

In this section, we aim to show that the proposed SbS
model improves the spatial consistency compared to the other
models, i.e., PL modeling accuracy as MS moves along a
route. Comparison is done with a simulated route in the area of
the NYC dataset ray-tracing area with the same BS locations,
thus allowing a direct comparison of the original data and the
PL behavior predicted by the models. The map, BS locations,
and the simulation route are illustrated in Fig. 9. The route
is 3690 m long with MS locations every 15 m. A maximum
PL level of 160 dB was used to parametrize the SbS model
and the typical αβ- and CI models. The same PL cutoff limit
is used in these comparisons and PL values over 160 dB are
not used, i.e., those locations are in outage without any power
value assigned. All the models are assigned the LOS/NLOS
condition based on the NYC map and the BS locations as well
as all the geometrical parameters needed in the models.

The following models are compared:
1) The proposed SbS model as presented in Secs. IV - VI.

PL values are not available for MS locations outside
LOS, NLOS, and NLOS2, and those locations are in
outage. The geometrical parameters come from the map,
i.e, link distance along the street canyons, distance to
corner dc, and corner angle θ.

2) The typical αβ- and CI models with the model parame-
ters as given in Table I. The only geometrical parameter
that the typical models use is the link distance.

3) A quasi-deterministic 28 GHz UMi street canyon PL
model from [16], presented in Section II-B. This model
is used as an example because it has been parametrized
for 28 GHz UMi. The main differences to the proposed
SbS model are that [16] has been parametrized based on
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measurements and it does not model the variations in
the PL model parameters. Also, [16] has only LOS and
single-corner-NLOS, and other MS locations, including
NLOS2, are in outage. The average dcor for LOS and
NLOS are taken from the SbS model as [16] does not in-
clude shadow fading correlation properties. dcor = 7.2 m
is used for LOS. An average of all NLOS and NLOS2,
dcor = 7.8 m, is used for NLOS. BS and MS height
and link distances for (6) - (9) are taken from the map.
For simplicity the same street width value W = 20 m is
used for all streets.

PL statistics along this route are gathered for all the models.
Comparison is done based on the PL values, the rate PL
changes along the route, and signal-to-interference ratio (SIR).
The signal is the strongest received power from BS with
the lowest PL and the interference is calculated as the sum
of powers from all other BSs. Comparison can be done for
statistics for the whole route, e.g., by comparing simulated
mean SIR to mean SIR from model, or for every point along
the route. Comparison of PL and SIR values from the models
to the original RT data gives statistics on the prediction error
locally for all points.

Cumulative distributions functions (CDFs) of PL values and
PL rate of change, given in dB/m, are shown in Fig. 10. These
statistics are gathered along the route from all 11 BS and
several runs of the models. As depicted, the proposed SbS
model clearly gives the best match to the RT data. The SbS
model gives the best fit also in the tails of the CDFs. The
model from [16], has been parametrized based on different
data and gives different PL value statistics due to differences
in the levels of expected PL. Therefore, the more important
comparison is in the PL rate of change, where we can see
that the model [16] clearly underestimates how fast the PL
changes locally. The typical αβ- and CI models give similar
results. The effects of large RMSD values can be observed in
Fig. 10. With relatively high PL levels, typical in NLOS, PL
along many NLOS streets changes fast, with large PL slope,
as explained in Section III-B. These models have a simple
expected PL equation which only depends on the distance
between the BS and MS and do not take into account the
street grid geometry. Mean and standard deviation statistics
of SIR along the route are compared in Table IX. Again,
the proposed SbS model gives the best match to the values
calculated directly from the ray-tracing data. Comparison of
PL and SIR values on each point along the route provide
statistics on the difference between the original ray-tracing
and the values predicted by the models presented in Fig. 11.
This kind of local difference is a good measure of the spatial
consistency. As shown in Fig. 11, the proposed SbS model
provides smaller differences to the ray-tracing data for both
PL and SIR. Note that the models do not try to replicate the
ray-tracing data, rather the model should have similar statistics
along the route as well as locally.

The comparison presented in this section clearly shows that
the SbS model provides improved accuracy both locally as
well as on the statistics along a long route. The comparison is
conducted between the models and the ray-tracing dataset used
in this paper to parametrize the proposed model. Therefore, the
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Fig. 10. Comparison of the ray-tracing PL and the models: street-by-street
model (SbS), αβ model (αβ), CI model (CI), and model [16]. Comparison
of PL and PL rate of change statistics gathered along the route with all 11
BS.

Fig. 11. Comparison of the ray-tracing PL and the models: street-by-street
model (SbS), αβ model (αβ), CI model (CI), and model [16]. Difference
between the model and RT; PL and SIR on each point along the route. The
PL difference is not calculated for location in which RT or model is in outage,
and therefore the CDFs do not go up to 1.

TABLE IX
MEAN AND STANDARD DEVIATION OF SIR ALONG THE ROUTE WITH ALL

11 BS. RAY TRACING (RT), STREET-BY-STREET MODEL (SBS), αβ
MODEL (αβ), CI MODEL (CI), AND MODEL [16].

Model mean SIR [dB] std SIR [dB]
RT 15.8 14.2
SbS 15.7 13.0
αβ 14.1 11.7
CI 13.6 11.3

[16] 23.7 16.9

modeling principle is proven to be able to accurately model
the PL behavior in this dataset in a spatially consistent manner.
It is important to note that this particular parametrization has
not been validated for all street canyon environments which
will require comparison to a different dataset that is not used
for parametrization. Preferably the validation should be done
with a measured PL dataset.

VIII. CONCLUSION

In this paper we have analyzed the traditional method
of PL modeling that provides a straight-line fit (on a dB-
over-log10(d/d0) scale) to all PL values measured in a cell.
We found that in urban environments, the deviations from
the PL fit can be ascribed to two distinct effects, namely
(i) “true” shadowing, i.e., variations of the received power
around the distance-dependent mean as the MS moves on
a trajectory down a street canyon, and (ii) variations of the
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offset and the slope of the straight-line fit between different
street canyons. We found that the estimated shadowing vari-
ance can be significantly overestimated if the two effects are
not properly distinguished. In other words, to obtain proper
shadowing variances, measurement (or ray tracing) data have
to be analyzed on a street-by-street basis.

A spatially consistent street-by-street (SbS) PL model for
28 GHz channels in urban micro cell (UMi) environment is
presented. The model parametrization example is based on a
large PL dataset from ray-tracing simulations in NYC and in
total includes 11 different BS locations. The PL parameters
are analyzed for a total of 28 LOS and 164 NLOS streets.
The new PL and shadowing models provide a different PL
slope, offset, shadow fading variance, and correlation distance
for each street canyon, and can, therefore, provide a spatially
consistent model that takes into account the observed non-
stationarity of the PL behavior. Large variance is observed for
all parameters. After careful analysis of the cross-correlations
of the PL parameters and geometrical parameters, the NLOS
streets are divided into three classes based on the street
orientation compared to the BS. Finally, a simple simulation
example on a street grid is shown and used to compare the
proposed model to typical PL models, and the proposed SbS
modeling principle is shown to be better in terms of spatial
consistency.
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