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Abstract—Roundtrip Time-of-arrival (ToA) measurements em-
ploying ultra-wideband (UWB) signals can provide high-precision
ranging information. However, the accuracy is degraded by
multiuser interference (MUI), in particular in the presence
of multipath propagation. While the processing gain of time-
hopping impulse radio (TH-IR) can be used to suppress the
MUI, this is often insufficient. We propose instead a nonlinear
processing scheme of TH-IR that effectively suppresses MUI
without requiring knowledge of the time-hopping sequences of
the interfering users. The principle is that multipath components
(MPCs) of interferers do not align closely, for the majority
of transmission frames, with the MPCs of the desired signal.
Through a judicious choice of algorithm parameters we show
that our algorithm is superior to existing (realizable) thresholding
and median filter algorithms, and in some cases can even beat
genie-aided thresholding algorithms. The performance is robust
to both strength and number of the interferers. The results are
validated with both standardized 802.15.4a channel models and
measured outdoor UWB channels.

Index Terms—Ranging, time-of-arrival, multiuser interference,
ultra-wideband

I. INTRODUCTION

Accurate position information is of high importance in
many commercial, public safety, and military applications.
While Global Positioning System (GPS) serves this purpose
in outdoor environments, it is often unreliable or inaccessi-
ble in cluttered environments such as indoors, narrow street
canyons, caves, and dense forests. For this reason, alternative
positioning techniques based on ranging between ground-
based devices need to be explored. While fingerprinting of
received signal strength (RSS) has received great attention [3],
[4], the ranging accuracy depends on access to database of
RSS. Ranging using the ultra-wideband (UWB) signals is
promising due to the good range resolution associated with
large bandwidth.

Ranging techniques are based on time-of-arrival (ToA) of
the first path. ToA estimation is mainly affected by receiver
noise, multipath propagation and interference. In a dense
multipath channel, the first path is not always the strongest
path thereby making ToA estimation challenging.

UWB ranging in the presence of noise and multipath
propagation has been studied extensively in the literature. For
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a single path additive white Gaussian noise (AWGN) channels,
a matched-filtering (MF) receiver is the maximum likelihood
(ML) ToA estimator with theoretical bounds on the ranging
error given in [11]–[13]. For AWGN with multipath, [14]
and [15] respectively derived the Cramer-Rao bound (CRB)
and Ziv-Zakai bound (ZZB) on the mean square error (MSE)
in ToA estimation. The ML estimators for the ToA estimation
were proposed in [16] and [17]; however, computational com-
plexity of these estimators limits their implementation. Prac-
tical sub-optimal ToA estimators were proposed in [18], [19].
Several low complexity, subsampling ToA estimators, based
on the energy-detection (ED) have been proposed in [19]–
[21]. The performance of the MF and ED receivers has been
summarized in [22]. A two-step hybrid ToA estimator was
proposed in [23]. In it, the coarse estimate is obtained from
energy detection and a fine estimate is obtained from matched-
filtering. A blind, ToA estimator based on model selection by
information theoretic criteria is proposed in [24].

Very few papers in the literature addressed the issue of inter-
ference in UWB ranging. In multiuser network, signals from
multiple users can interfere with the desired signal thereby
deteriorating the ranging accuracy. While using distinct time-
hopping (TH) sequences for different users, followed by
coherent combining of signals can suppress the interference
to certain extent, the residual interference can be significant
compared to the first arriving path from the desired user, and
hence can result in early false alarms. This is because the
first arriving path is not always the strongest path. In fact, it
can have significantly lower energy than the strongest path,
especially in non-line of sight (NLOS) conditions. Thus this
effect might occur even in the absence of near/far effects
that are the reason for significant MUI in TH communication
systems. Hence, finding a good threshold to separate the
interference multipath components (MPC) from the first MPC
of the desired user is difficult or even impossible.

Ref. [25] proposed non-linear filtering schemes like min-
imum filtering and median filtering to mitigate the mul-
tiuser interference (MUI). Ref. [26] considered both MUI
and narrowband interference (NBI), and proposed differential
filtering, to mitigate the interference. These papers considered
the ED receivers and studied the performance with only
one interfering user. While the ED receivers have low cost
implementation, its performance is poor compared to matched-
filtering (coherent) receivers, especially when the signal-to-
noise ratio (SNR) is small. Also, the energy based non-linear
filtering schemes cannot exploit noise averaging across frames,
as the noise becomes correlated after filtering. MUI mitiga-
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tion in UWB ranging using coherent receivers is considered
in [27]. However, it was assumed that the receiver knows
the TH sequences of all the interfering users, and proposed
an iterative successive interference cancellation technique for
ToA estimation. In a dense multipath channel, this approach
becomes computationally intense. More importantly, acquiring
the TH sequences of all the interfering users is difficult
especially when the users are mobile. It can also happen that
the interfering users are hostile and do not share their TH
sequences.

The key contributions of the paper are

• A novel coherent ranging algorithm that suppresses the
MUI without having to know the TH sequences of the
interfering users. Only the TH sequence of the desired
user is known to the receiver. To the best of our knowl-
edge, this is the first paper in the literature that talks about
the MUI suppression for coherent UWB ranging, without
having to know the TH sequences of the interfering users.
We make use of the fact that after de-hopping the received
signal, the receiver effectively has multiple waveforms,
one per every frame duration in the TH signal. While
the signal MPCs in these waveforms are time-aligned,
because of the time-hopping nature, an interference MPC
hops around the signal MPCs across different waveforms,
thereby making it feasible to separate an interference
MPC from a signal MPC.

• Performance bounds: We model the MPC delays by
a Poisson process and develop bounds on the false
alarm probability from interference and noise MPCs and
detection probability of signal MPCs, as a function of
algorithm parameters.

• We provide a judicious choice of parameters and using
the analytical expressions derived earlier, we show that
the proposed algorithm effectively suppresses the strongly
interfering MPCs.

• Performance evaluation with synthetic channels: Using
IEEE 802.15.4a channel models, we show that the pro-
posed ranging scheme is robust to the strength of inter-
ference and the number of interfering users in the system,
and performs much better than the thresholding schemes
and the non-linear filtering schemes considered in the
literature.

• Experimental study of performance: We also carried out
an urban outdoor channel measurement campaign with
UWB channel sounder and tested the performance of our
algorithm in both LOS and NLOS measured scenarios.
We compare the performance of our ranging scheme with
some well-known coherent and non-coherent thresholding
schemes.

The paper is organized as follows. The system model is
developed in Sec. II. The thresholding schemes and the pro-
posed ranging algorithm are described in Sec. III-A and III-B
respectively. The performance bounds for the proposed ranging
scheme are developed in Sec. IV. The performance evaluation
is done with synthetic channels in Sec. V. The measurements
description and the corresponding results are given in Sec. VI.
Finally, the paper is concluded in Sec. VII. The mathematical

details are moved to the Appendix.

II. SYSTEM MODEL

We consider a multiuser network with (I + 1) users si-
multaneously transmitting at any given time. Without loss of
generality, we assume the first user as desired and the other I
users as interference. The users are assigned fixed and distinct
TH sequences. The TH signal transmitted by the ith user is
given by [6]

si(t) =
√

Ei

N∑
n=1

p(t−(n−1)Tf−ci(n)Tc−Di), 0 ≤ t ≤ NTf ,

where p(t) is the unit energy UWB pulse, Ei is the signal
energy per frame, and ci is the chip sequence of the ith user
with ci ∈{0, 1, · · · , Nc−1}Nc . Tc is the chip duration, Tf is
the frame duration, Nc is the size of the code alphabet and the
number of chips per frame (Tf =NcTc), and N is the number
of frames per symbol. Di is the transmission start time of the
ith user. Without loss of generality, we assume D1 = 0. We
assume that all users use the same pulse shape p(t).

Let hi(t) denote the impulse response of the channel
between the ith user and the receiver. The received signal is
given by 1

r(t) =
I+1∑

i=1

si(t) ∗ hi(t) + n(t), (1)

where (∗) is the convolution operation and n(t) is the zero-
mean AWGN with variance N0. The model implicitly assumes
that the channel is quasi-static during the transmission of the
ranging signals, given typical pedestrian coherence times (∼
10 ms [1]), this is a realistic assumption. We assume that NBI
can be removed by notch filtering and hence do not model it.

The signal-to-noise ratio (SNR) and signal-to-interference
ratio (SIR) for the desired user are defined as follows

SNR , E1

N0
, SIR(i) , E1

Ei+1
, i = 1, 2, · · · , I. (2)

Notice that SIR in general is a function of user in-
dex as different interfering users can transmit with differ-
ent power and can be at different distances from the re-
ceiver. We assume that the receiver only knows the TH
sequence of the desired user and not of the interfering
users. The receiver can now perform the de-hopping process,
by dividing the observation time into N intervals, In ,
[c1(n)Tc+(n−1)Tf , c1(n)Tc+(n−1)Tf +T ] , 1 ≤ n ≤ N ,
each of length T (T < Tf ). We assume that the delay spread
of the channel is smaller than one frame duration. Without
loss of generality, we assume that the chip-sequence for the
desired user is the all zero sequence.

The receiver effectively has the following N waveforms

rn(t) , r(t + (n− 1)Tf ), 1 ≤ n ≤ N, 0 ≤ t ≤ T (3)
= S(t) + In(t) + Nn(t), (4)

1The frames from different users can arrive at different times and is
implicitly captured by the channel impulse response of the users. The delay
corresponding to the first MPC can be different for different users.
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Fig. 1. Effective impulse responses after de-hopping. (IEEE 802.15.4a CM1
channel realization with N = 50 and I = 1.)

where the signal, interference and the noise terms are defined
as follows:

S(t),
√

E1p(t) ∗ h1(t) = p(t) ∗ hS(t), (5)

In(t),
I+1∑

i=2

√
Eip(t)∗hi (t−ci(n)Tc−Di)=p(t)∗h(n)

I (t), (6)

Nn(t), n(t + (n− 1)Tf ), (7)

where hS(t) ,
√

E1h1(t) is the effective impulse response
between the desired user and the receiver and h

(n)
I (t) ,∑I+1

i=2

√
Eih (t− ci(n)Tc −Di) is the effective impulse re-

sponse between the interfering users and the receiver. Nn(t)
is a Gaussian process with the same statistics as n(t).

Notice that while hS(t) is same for all the N waveforms,
h

(n)
I (t) is different for different waveforms. This is because

the chip sequence ci(n) is different for different n. Figure 1
compares the sample impulse responses hS(t) and h

(n)
I (t) for

different n. It can be seen that the desired signal MPCs, across
the N waveforms, are time aligned and have the same strength.
The interference MPCs appear to be time-hopping across the
different waveforms. Hence, it is possible to separate the signal
MPC from the interference MPC without even knowing the TH
sequences of the interfering users.

III. TOA ESTIMATION ALGORITHMS

Our goal is to extract the ToA of the first path for the desired
user, from the waveforms {rn(t)}N

n=1. We first briefly discuss
some ToA estimation schemes developed in the literature
for mitigating the MUI and then describe the proposed ToA
estimation algorithm.

Since the high-resolution CLEAN algorithm is a base for
these ranging schemes, we briefly describe it below.

CLEAN algorithm: It is used to extract the MPCs from
the received waveform. CLEAN is an iterative deconvolution
technique first introduced in [7] for the enhancement of
the radio astronomical maps of the sky and widely used

in microwave and UWB communities as an effective post-
processing method for time-domain channel measurements [8],
[9]. In it, the received signal is correlated with the template
signal, and the amplitude and location of the correlation peak
is determined, followed by a subtraction of the contribution of
the thus-detected MPC from the received signal.

For instance, if y(t) =
∑L

k=1 αkp(t − τk) + n(t) is
the received signal with p(t) being the template signal, the
correlation is given by

ρ(τ) =
∫

p(t− τ)∗y(t)dt =
L∑

k=1

αkRp(τ − τk) + N(τ), (8)

where Rp(.) is the auto-correlation of the template signal
and N(τ) ,

∫
p(t − τ)∗n(t)dt is a circular symmetric

complex Gaussian random process with covariance function
KN (t1, t2) = N0Rp(t1 − t2).

The location of the strongest MPC is τ̂1 = arg maxτ |ρ(τ)|
and the corresponding strength is α̂1 = ρ(τ̂1). The contribution
of the strongest MPC, α̂1p (t− τ̂1), is removed from the
received waveform. The residual signal is correlated with the
template to determine the next strongest MPC. This process
repeats and by the end of M iterations, we have the MPCs
{α̂1, · · · , α̂M , τ̂1, · · · , τ̂M}, and the residual signal is

y(M)(t) , y(t)−
M∑

k=1

α̂kp(t− τ̂k). (9)

The process stops when the peak correlation between the
residual signal and the template falls below a predetermined
threshold η |ρmax| (0 ≤ η ≤ 1 and ρmax , α̂1 is the maximum
correlation between the received waveform and the template).

Notice that the estimated MPC location can be off from the
true location. When the MPCs are resolvable, the offset in the
location estimate is bounded by [22]

P (|τ − τ̂ | ≤ W ) = 1−Q




√
|α|2
N0

(1−Rp(2W ))


 , (10)

where Q(.) is the Q-function, α is the strength of the MPC
and W is the window size. Hence, the larger the strength of
the MPC and the faster the decay of the auto-correlation of
the template signal, the higher the probability that the estimate
is within the window [τ −W τ + W ].

A. Thresholding schemes

One simple and commonly used strategy for mitigating the
MUI is to average the N waveforms, extract the MPCs from
the averaged waveform using CLEAN, use a good threshold
to separate the first arriving signal MPC from the interference
MPCs and the noise peaks, and declare the MPC with the
smallest delay as the ToA estimate.

Notice that the ranging error is sensitive to the threshold η.
In the presence of noise and/or MUI, finding a good threshold
is challenging. Setting large η can result in missing the weak
signal MPCs and a small η can result in early false alarms
from capturing interference MPCs or noise peaks.

Averaging works well when N is very large or SIR is high.
But in reality, N is limited by the coherence time of the
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channel. Since all users transmit with similar power level, SIR
of 0 dB is typical and it can even attain a large negative value
due to near/far effects or LOS/NLOS situations. For a finite N
and a reasonable SIR, the residual interference after averaging
can be comparable to or larger than the first arriving MPC
from the desired user. Hence, this approach can result in large
miss-detection and early false alarms, thereby deteriorating the
ranging accuracy.

In the remainder of the paper two different thresholds are
considered as benchmarks:

1) Genie thresholding: For every channel realization, η is
chosen to minimize the instantaneous ranging error. This is
done by performing the brute-force Monte Carlo simulations-
based search. Note that this is not feasible in practice: in order
to determine the instantaneous ranging error and hence the
optimal η, we would have to know the instantaneous channel
impulse response which is the quantity we wish to measure.

2) Lookup table based thresholding: η is chosen to min-
imize the mean-squared error (MSE) in the range estimates.
This can be realized in practice by forming a lookup table of
optimal η for different SNR, SIR, I and N . The threshold is
picked based on the operating conditions.

B. Proposed ToA estimation algorithm

By averaging the waveforms, we lose the information about
the location of the interference MPCs. Instead, we can first
determine the location of interference MPCs, remove their
contribution from each of the waveforms and then average the
interference-free waveforms and extract the ToA information.
The algorithm has been summarized in Algorithm 1. We now
describe each of the steps in detail.

1) Impulse response extraction from the waveforms: We use
CLEAN algorithm to extract the impulse responses from each
of the N waveforms. We use a fixed correlation threshold of
µ , 2.12

√
N0, so that the false alarm probability due to the

noise peak is small. A noise peak occurs at τ if the correlation
exceeds the threshold; the probability of this event is

P (|ρ(τ)| > µ) = P (|N(τ)| > µ) = exp
(
− µ2

N0

)
= 0.01.

Let
{

τ̂
(n)
k , α̂

(n)
k , 1 ≤ k ≤ Ln

}
be the location and the strength

of the MPCs extracted from the waveform rn(t). The impulse
response is defined as ĥn(t) ,

∑Ln

k=1 α̂
(n)
k δ(t − τ̂

(n)
k ). Since

rn(t) has contributions from desired user, interfering users,
and noise, the MPC delay τ̂

(n)
k can correspond to desired user

or the interfering users or the noise peak.
2) Separating the interference and signal MPCs: Consider

the set
{

ĥn(τ), 1 ≤ n ≤ N
}

. As seen from Figure 1, if τ

corresponds to a signal MPC location, most of the values in
the set are similar. If τ corresponds to a noise peak in one
waveform, many of the values in the remainder of the set
will be zero since the odds of noise peaks happening at the
same location in multiple waveforms are low. If τ corresponds
to an interference MPC location in one waveform, some of
the values in the remainder of the set will be zero and even
the non-zero values in the set are distinct. This is because an

Step 1: Impulse response extraction from waveforms
for n = 1:N do

MPCs extraction from rn(t):{
τ̂

(n)
k , α̂

(n)
k , 1 ≤ k ≤ Ln

}

Impulse response: ĥn(t) ,
∑Ln

k=1 α̂
(n)
k δ(t− τ̂

(n)
k )

end
Step 2: Separating the interference/noise and signal
MPCs
for n = 1:N do

∆I
n = [ ], ∆S

n = [ ]
for k = 1:Ln do

Accumulate MPCs in 2W window:
Xm ,

∫ W

w=−W
ĥm(τ̂ (n)

k − w)dw
Consider the set {Xm, 1 ≤ m ≤ N}.
if ∃ a cluster of at least N̄ non-zero data points
around Xk then

Declare τ̂
(n)
k as a signal MPC

Collect signal MPCs: ∆S
n = [∆S

n τ̂
(n)
k ]

else
Declare τ̂

(n)
k as an interference/noise MPC

Collect interference MPCs: ∆I
n = [∆I

n τ̂
(n)
k ]

end
end

end
Step 3: Interference suppression and noise averaging
for n = 1:N do

r̃n(t) = rn(t)−∑
τ̂∈∆I

n
ĥn(τ̂)p(t− τ̂)

end
Noise averaging: ravg(t) = 1

N

∑N
n=1 r̃n(t).

Step 4: Range (or) ToA estimation
MPC delay extraction from ravg(t): {τ̂k, k ≥ 1}
T̂oA = min

{
τ̂k : |τ̂k − τ̂k+1| < 5.3

λ

}
.

Algorithm 1: Proposed ToA estimation
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interference MPC time-hops across the different waveforms as
explained earlier. However, we also have to take into account
that because of noise, the estimated MPC locations can vary
around their true locations. If τ is the true signal MPC location,
because of i.i.d. noise in different waveforms, the offset in the
location estimate is also i.i.d. across the waveforms, but with
high probability the estimates will all lie in [τ −W, τ + W ].
This can also be seen from Figure 2, which plots the offset
in the signal MPC location estimates for the strongest five
MPCs. It can be seen that the amount of offset is inversely
proportional to the strength of the MPC.

Using the intuition presented above, we now propose the
following heuristic rule to decide if the MPC location τ̂

(n)
k

corresponds to a signal MPC or an interference/noise MPC.
For 1 ≤ n ≤ N and 1 ≤ k ≤ Ln,
• Construct the set {Xn, 1 ≤ n ≤ N}, where Xn ,∫ W

w=−W
ĥn(τ̂ (n)

k −w)dw. This is done to compensate for
the offset in the MPC location estimates. Let M be the
number of non-zero values in this set.

• M < N̄ : Declare τ̂
(n)
k as an interference/noise MPC

(A signal MPC will be detected in at least N̄ out of N
waveforms). N̄ is an algorithm parameter that will be
discussed later.

• M ≥ N̄ : If τ̂
(n)
k is an interference MPC, these M data

points are distinct and far apart. If it is a signal MPC,
most of these data points are clustered. In some of the
waveforms, an interference MPC can overlap with the
signal MPC thereby deteriorating the MPC amplitude
estimate. Since we do not assume the knowledge of
strength of interference MPCs, we simply identify such
estimates and discard them as below.

– Construct a circle of radius γ around every data point
and count the number of data points enclosed by the
circle (including the center).

– If there is no such circle enclosing at least N̄ out of
M data points, declare τ̂

(n)
k as an interference MPC.

– If there is more than one circle enclosing N̄ or more
data points, consider the circle enclosing maximum
number of data points. If Xn is outside the circle,
declare τ̂

(n)
k as an interference MPC and if Xn is

inside, declare τ̂
(n)
k as a signal MPC.

Let ∆I
n ,

{
τ̂

(n)
k , 1≤k≤Ln | τ̂ (n)

k is an interference MPC
}

be the collection of interference MPCs corresponding
to the n

th
received waveform, rn(t). Similarly,

the collection of signal MPCs is given by
∆S

n ,
{
τ̂

(n)
k , 1≤k≤Ln | τ̂ (n)

k is a signal MPC
}

.
3) Interference suppression and noise averaging: Notice

that we could have stopped once τ̂
(n)
k is detected as signal

MPC. But doing so, we cannot take advantage of the increased
SNR obtained from averaging the waveforms. Instead, we
detect the interference MPCs, remove their contribution from
the waveforms, and average them to increase the SNR.

r̃n(t) = rn(t)−
∑

τ̂∈∆I
n

ĥn(τ̂)p(t− τ̂), 1 ≤ n ≤ N. (11)

Notice that the above steps remove strong interference and
noise peaks. The waveforms are now averaged to suppress

any weak residual interference and noise.

ravg(t) =
1
N

N∑
n=1

r̃n(t). (12)

4) Range extraction: Assuming that the interference is
effectively suppressed in the above steps, ravg(t) can be treated
as the received waveform in AWGN. We again use the CLEAN
algorithm to extract the first MPC. To be fair in comparison,
we chose the correlation threshold from the lookup table that
is generated for I = 0 (No interference case). We furthermore
require that the delay between the first and second MPC is
consistent with the statistics of the inter-arrival times of MPCs,
which is assumed to be known. This is required to filter out
any residual interference MPCs, as their inter-arrival times
has significantly larger delays than the signal MPCs. 2 When
the MPC arrival times are modeled as Poisson process with
parameter λ, probability that the inter-arrival times exceed 5.3

λ
is 0.5%.

Let the extracted MPCs location be {τ̂k, k ≥ 1}. The ToA
estimate is given by

T̂oA = min
{

τ̂k : |τ̂k − τ̂k+1| < 5.3
λ

}
. (13)

IV. PROPOSED ALGORITHM ANALYSIS

We now analyze the performance of the proposed ranging
scheme and study the impact of parameters W , γ and N̄ . To
make the analysis tractable we make the following modeling
assumptions. The channel impulse responses of the users,
{hi(t)}I+1

i=1 , are assumed i.i.d. random processes. For the ith

user, the arrival times of the MPCs are modeled as Poisson
process with rate λ and the strength of the MPCs are assumed
to be independent Rayleigh RVs. The chip sequence ci(n) are
assumed i.i.d. across n (waveform index) and i (user index),
and independent of the channel impulse responses.

Thus, the MPC arrival times corresponding to the delayed
impulse response hi(t−ci(n)Tc) also follow a Poisson process
with rate λ, for different i and n. Hence, the MPC arrival
times corresponding to the sum interference, h

(n)
I (t), follow a

Poisson process with rate λI , and is i.i.d. across n.
Henceforth, we use the following notation: fX(x) shall

denote the density function of RV X . P(A) and E [A] shall
denote the probability and expectation of A respectively.
Similarly P(A|B) shall denote the conditional probability of
A given B.

A. False alarms from a noise peak

We will now compute the probability that the algorithm
falsely detects a noise peak from CLEAN as a signal MPC.
Let τ be the MPC location corresponding to a noise peak.
Without loss of generality, we assume that a noise peak of
strength X1 (|X1| > µ), occurs at τ , in the first waveform.

2For instance, with 1% false alarm probability and I = 10 interfering
users, the residual interference MPC inter-arrival times are exponential with
mean 100

λI
= 10

λ
. But, the signal MPC inter-arrival times are exponential with

mean 1
λ

.
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The algorithm makes false detection of τ as a signal MPC, if
at least N̄−1 of the remaining N−1 waveforms have a noise
peak in [τ−W, τ +W ] and there exists a circle of radius γ
enclosing at least N̄ of these points, including X1. The false
alarm probability is upper bounded by

Pf,N ≤
N∑

m=N̄

min

([(
N−1
m−1

)(
1− 2W exp

(
− µ2

N0

))N−m

×
(
2W exp

(
− µ2

N0

))m−1
]
,

[
m∑

k=N̄

k

(
m−1
k−1

)∫ ∞

0

1
N0

exp
(
− y

N0

)

×

1−Q1




√
2y

N0
,

√
2γ2

N0







k−1

Q1




√
2y

N0
,

√
2γ2

N0




m−k

dy

])
,

where Q1(., .) is the Marcum Q-function. The details are given
in Appendix A.

B. False alarms from an interference MPC

We will now compute the probability that the algorithm
falsely detects an interference MPC as a signal MPC. Without
loss of generality, we assume that an interference MPC of
strength X1 (|X1| > µ) occurs at τ , in the first waveform.
Let EI be the average energy of the interference MPCs.

The algorithm makes false detection of τ as a signal MPC
if at least N̄ − 1 of the remaining N − 1 waveforms have an
interference MPC in [τ −W, τ + W ] and there exists a circle
of radius γ enclosing at least N̄ of these points, including X1.
The false alarm probability is upper bounded by

Pf,I ≤
N∑

m=N̄

min

([(
N − 1
m− 1

)
(1−exp (−2WIλ))m−1

×exp (−2WI(N−m)λ)

]
,

[
m∑

k=N̄

k

(
m−1
k−1

)∫ ∞

0

1
EI

exp
(
− y

EI

)

×

1−Q1




√
2y

EI
,

√
2γ2

EI







k−1

Q1




√
2y

EI
,

√
2γ2

EI




m−k

dy

])
.

The details are given in Appendix B.

C. Signal MPC detection

Consider a signal MPC with strength α and at location τ .
We will now compute the probability that the algorithm detects
τ as a signal MPC.

The algorithm correctly detects τ as a signal MPC, if in at
least N̄ of the N waveforms τ is detected as MPC and there
exists a circle of radius γ enclosing at least N̄ of these points.
The detection probability is lower bounded by

Pd ≥
N∑

m=N̄

N−m∑

k=0

m∑

l=N̄

(
N

m+k

)(
m+k

m

)(
m−1
l−1

)
p(α)m

× (1−p(α))k exp(−2WλI(m + k)) (1−exp (−2WλI))N−m−k

×
∫ ∞

max(µ−|α|,0)
q(α, r)l−1 (1−q(α, r))m−l r

πN0
exp

(
− r2

N0

)
g(r)dr,

where p(α) and q(α, r) are given in (26) and (29) respectively,
g(r) is defined in Appendix C. The details are given in
Appendix C.

D. Choice of parameters N̄ , γ, and W

From the analysis presented in the earlier section, it can
be seen that as N̄ increases, the false alarm from noise
and interference decreases, but the signal MPC detection
probability also decreases. Similarly as γ or W increases, the
detection probability increases but the false alarms from noise
and interference also increases. An optimized choice could be
done based on the bounds derived above; however this would
require a 3-dimensional grid search. We instead use a heuristic
approach to find a good choice of parameters, and then use
the bounds to demonstrate the effectiveness of these choices.

Probability of a noise peak occurring in the interval
[τ −W, τ + W ], in any waveform is upper bounded us-
ing (19). Since noise in different waveforms is i.i.d., the
expected number of waveforms with a noise peak in the
interval [τ −W, τ + W ] is upper bounded by

E [#waveforms with a noise peak in [τ −W, τ + W ]]

≤ 2WN exp
(
− µ2

N0

)
. (14)

Hence, we chose N̄ ≥ 2WN exp
(
− µ2

N0

)
, so that the false

alarms from noise peak is small.
Probability of an interference MPC in the interval

[τ −W, τ + W ], in any waveform is 1−exp (−2WλI). Since
interference MPC arrival times in different waveforms is i.i.d.,
the expected number of waveforms with an interference MPC
in the interval [τ −W, τ + W ] is given by

E [#waveforms with an interference MPC in [τ−W, τ+W ]]
=N (1−exp (−2WIλ)) . (15)

Hence, we chose N̄ ≥ N (1− exp (−2WIλ)), so that the
false alarms from interference is small.

Consider a signal MPC with strength α and at location τ .
The expected number of waveforms in which an interference
MPC also happens in [τ −W, τ + W ] is given by (15). Hence,
on average only N exp (−2WIλ) waveforms are free from
interference at τ . For these waveforms free from interference,
the estimated strength of the signal MPC at τ is Xk = α +
Nk. The radius of the circle, γ, is chosen such that with high
probability, circle centered around one point encloses the other
points. Since |Xi −Xj |2 = |Ni −Nj |2 is an exponential RV
with mean 2N0, for γ∗ = 3

√
N0, we have

P (|Xi −Xj | > γ∗) = P
(
|Ni −Nj |2 > 9N0

)
= 0.01.

Also, we chose N̄ ≤ N exp (−2WIλ), so that the probability
of detection of signal MPC is high. Since the miss detection
of signal MPC is more critical than the false alarms, as the
false alarms can be further suppressed by steps 3 and 4 of the
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algorithm, we chose

N̄∗ = min
[
N exp (−2WIλ) ,

max
(
2WN exp

(
− µ2

N0

)
, N (1−exp (−2WIλ))

)]
. (16)

The window size, W , should be small enough that the false
alarms from a noise peak and an interference MPC is small.
On the other hand it must be large enough that signal MPC
is detected. We chose W such that any signal MPC location
estimate, obtained from CLEAN, is at most W samples away
from the true location. Setting 95% confidence interval for
α = µ, in (10), we have

P(|τ − τ̂ | ≥ W ∗)=Q




√
µ2

N0
(1−Rp(2W ∗))


=0.05. (17)

Using µ = 2.12
√

N0, we have W ∗ = 0.5R−1
p (0.4).

We now study the bounds developed on the false alarm
and detection probability for the above choice of parameters.
Figure 3 plots the false alarm probability Pf,N and Pf,I as
a function of EI and the signal MPC detection probability
Pd as a function of |α|2. Performance is shown for I = 1,
5, and 10. It can be seen that the algorithm successfully
rejects strong interference MPCs and also rejects the noise
peaks significantly. Weak residual interference MPCs can be
further suppressed by steps 3 and 4 of the algorithm. The
signal MPC detection probability increases with |α|2. When
the number of interfering users is large, an interference MPC
overlaps with the signal MPC in several of the waveforms,
and if the interference is strong, it makes the desired signal
unrecognizable and hence the algorithm misses the signal
MPCs. For I = 10, the signal MPC detection probability is
only 0.55. In Figure 4, we justify the choice of parameters(
W ∗, γ∗, N̄∗). For I = 5, we plot the performance with

significantly different choice of parameters. The solid lines
is the performance with

(
W,γ, N̄

)
=

(
W∗
3 , γ∗

3 , N̄∗
3

)
. It has

higher false alarms from noise and lower detection probability
than

(
W ∗, γ∗, N̄∗). The dotted lines is the performance with(

W,γ, N̄
)

=
(
2W ∗, 2γ∗, 2N̄∗). It has very poor signal MPC

detection probability.

V. PERFORMANCE EVALUATION WITH SYNTHETIC
CHANNELS

We now evaluate the performance of the proposed ranging
scheme and compare it with some of the well-studied schemes
in the literature. The root mean square error (RMSE) in the

distance,

√
E

[∣∣∣d̂− d
∣∣∣
2
]

, is used as the performance metric.

Here d is the true distance between the desired user and the
receiver, and d̂ , cT̂oA is the estimated distance with c =
3× 108 being the speed of light.

The following parameter settings were used. For the trans-
mit pulse, the second derivative of the basic Gaussian pulse,

p(t) ∝
(

1− 4π
(

t
Tp

)2
)

exp
(
−2π

(
t

Tp

)2
)

is used with

Tp = 1 ns. The parameters of the time-hopping signal are
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Fig. 3. Performance bounds with
(
W ∗, γ∗, N̄∗) for N = 50 and λ = 6 ns.
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Fig. 4. Performance bounds with
(
W, γ, N̄

)
=

(
W∗
3

, γ∗
3

, N̄∗
3

)
and(

W, γ, N̄
)

=
(
2W ∗, 2γ∗, 2N̄∗) for N = 50, I = 5 and λ = 6 ns.

Tc = 4 ns and Nc = 60 (Tf = NcTc = 240 ns).
The chip sequences ci(n) are generated i.i.d. from the set
{0, 1, · · · , Nc − 1} with equal probability. The performance
was evaluated with 103 channel realizations of the IEEE
802.15.4a CM1 (residential line-of-sight) channel model [2].
For each channel realization, the chip sequences of the I + 1
users and hence the corresponding time-hopping signals are
regenerated independently. Three different values of I (I = 1,
I = 5 and I = 10) and two different values of N (N = 50
and N = 15) were considered; 1/λ = 6 ns was used. The
window size using (17) was W = 0.25 ns (10 samples). N̄
and γ are chosen as per the discussion in Sec. IV-D. The
performance of the proposed ranging scheme is compared with
the thresholding schemes described in Sec. III-A and the non-
linear filtering based energy detection schemes in [25]: for the
minimum and median filtering, the performance is optimized
over the block energy threshold and the length of the filter;
the search back window size is fixed to 60 ns. We first present
the results with interference from different users being the
same. For the later part of simulations, we also model the path
loss and shadowing and hence different SIR from different



8

−20 −10 0 10 20
0

1

2

3

4

 

 

Proposed ranging scheme, I = 1
Proposed ranging scheme, I = 5
Proposed ranging scheme, I = 10

−20 −10 0 10 20
10

−2

10
−1

10
0

10
1

SIR (dB)

RM
SE

 (m
ete

rs)

 

 

Thresholding scheme1:
Genie
Thresholding scheme2:
Lookup table
Minimum filtering
Median filtering
Proposed ranging scheme

−20 −10 0 10 20
10

−2

10
−1

10
0

10
1

SIR (dB)

 

 

Thresholding scheme1:
Genie
Thresholding scheme2:
Lookup table
Minimum filtering
Median filtering
Proposed ranging scheme

−20 −10 0 10 20
10

−2

10
−1

10
0

10
1

RM
SE

 (m
ete

rs)

 

 

Thresholding scheme1:
Genie
Thresholding scheme2:
Lookup table
Minimum filtering
Median filtering
Proposed ranging scheme

I = 5I = 1

I = 10

Fig. 5. Performance evaluation of different ranging schemes, as a function of SIR (SNR = 20 dB and N = 50).

interfering users.
Figure 5 compares the RMSE of different ranging schemes,

as a function of SIR, for a fixed SNR of 20 dB and N = 50
waveforms. Performance was shown for I = 1, I = 5 and
I = 10. From (16), the corresponding N̄ are 12, 17, and 22.
As mentioned earlier, we assume E2 = E3 = · · · = EI+1.
As expected, for the thresholding schemes, the RMSE de-
creases with SIR. Also, for these schemes, RMSE signifi-
cantly increases with I in the interference limited regime.
In the interference limited regime, the residual interference
after averaging is comparable to the strength of the LOS
component from the desired user and hence even a genie
thresholding scheme has a large RMSE. The proposed ranging
scheme effectively suppresses the strong interference MPCs
(can also be seen from Figure 3), and hence reduces the RMSE
significantly, and performs equally well at all SIR.

Notice that the proposed ranging scheme is always better
than the minimum and median filtering schemes, is better than
the lookup table thresholding scheme for SIR ≤ 8 dB, and
is even better than the genie thresholding scheme for SIR
≤ −8dB. In the noise limited regime, averaging is the best
thing to do and hence the lookup table thresholding scheme
is slightly better than the proposed ranging scheme. While the
proposed ranging scheme can eliminate noise peaks, it also
misses weak signal MPCs resulting in increased RMSE. Also
evident is the robustness of the proposed ranging scheme to
the strength of the interference and the number of interfering
users. While the RMSE is very similar for I = 1 and I = 5 in
the interference limited regime, it slightly increases for I = 10.
For large I , the proposed ranging scheme has a lower signal
MPC detection probability as discussed in Figure 3, and hence
increased RMSE.

Similar observations hold even for other values of N . For
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Fig. 6. Performance evaluation of different ranging schemes, as a function
of SNR, in presence of one active interfering user (SIR = 0 dB, I = 1, and
N = 50).

example, with N = 15 waveforms, the proposed ranging
scheme is better than the lookup table thresholding scheme
for SIR ≤ 10 dB, it is better than even the genie thresholding
scheme for SIR ≤ −4 dB and is better than median and
minimum filtering schemes at all SIR. The corresponding
figure is not shown for lack of space. In general, smaller the
N , better is the performance of the proposed ranging scheme
relative to the thresholding schemes.

Figure 6 plots the RMSE of different ranging schemes as a
function of SNR, for SIR = 0 dB and I = 1. As expected, the
RMSE decreases with SNR for all the ranging schemes in the
noise limited regime. When SNR is low (noise limited regime),
averaging is better than any non-linear filtering and hence both
the thresholding schemes outperform the proposed ranging
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Fig. 7. Performance evaluation of different ranging schemes, as a function
of transmit power, when SIR from different users is different (N = 50).

scheme. Beyond 16 dB SNR, interference is comparable to
noise and hence the proposed ranging scheme perform better
than the lookup table based thresholding scheme. However,
it is still inferior to the genie scheme, which can change
threshold every channel realization. Please note that the genie
scheme is unrealistic and is only used as a benchmark.

So far we had implicitly assumed that all the interfering
users are at same distance from the receiver and hence cause
same interference. We now model the user locations using
Poisson point process in two dimensional plane. The path loss
and shadowing are modeled as per the specifications in IEEE
802.15.4a CM1 channel model. We assume all the users (both
desired and interfering) transmit with the same power level
Ptx. Since different interfering users are at different distance
from the receiver, the received power from the interfering users(
Ek ∝ Ptxd−n

k

)
is different for different k.

Figure 7 compares the RMSE with different ranging
schemes as a function of Ptx and for different I . Notice that
as Ptx increases, the SNR increases but SIR remains the same.
For small Ptx, the system is in noise limited regime and hence
the ranging error decreases with Ptx. As mentioned earlier, in
noise dominated regime, averaging is better than non-linear
filtering and hence the thresholding schemes perform better
than the proposed ranging scheme. Beyond certain Ptx, the
system is in the interference limited regime and hence the
performance does not change with Ptx for the thresholding
schemes. However for the proposed scheme, which can sup-
press the interference, the ranging error decreases with Ptx.
Notice that the proposed scheme is better than lookup table
thresholding scheme beyond Ptx = 5 dBm, is also better than
the genie thresholding scheme for Ptx ≥ 15 dBm, and is
always better than the minimum and median filtering schemes.
For large Ptx, the RMSE with the proposed ranging scheme
slightly increases and this is more significant for I = 10. This
can be explained as follows: For large I and large Ptx, the
strength of interference is large. Hence, as discussed earlier,
interference MPC overlaps with signal MPC in most of the

waveforms, and since interference is strong, it makes the
desired signal unrecognizable and hence the algorithm misses
the signal MPCs. Also the behaviors of the minimum and
median filtering are consistent with the earlier work in the
literature. At low SNR, median filtering is better and at high
SNR, minimum filtering is better which is also reflected in
the figure. Minimum filtering works well at high SNR and
hence for large Ptx, it has lower RMSE than the lookup table
thresholding scheme.

VI. MEASUREMENT SETUP AND RESULTS

A. Measurement Site

The measurements were performed for both line-of-sight
(LOS) and non-line-of-sight (NLOS) scenarios in an outdoor
campus environment, namely the Vivian Hall of Engineering
(VHE) building at USC. The LOS measurements were per-
formed in the quad area, which is an open space enclosed
by tall buildings and trees on all the four sides, making it a
multipath rich environment. The terrain is a flat field mainly
made up of 5 cm high grass. The transmitter was fixed and
the receiver was moved around. Measurements were carried
out with 3 sets of distances between Tx and Rx (20 m, 30 m,
and 40 m). For each distance, the receiver was placed at 3
different positions (far apart) along the circumference of the
circle with transmitter as the center. At every position, a virtual
1x4 SIMO antenna array, with horizontal separation of 10 cm
was used at the receiver. The Tx/Rx antenna heights was set
to 100 cm. The same procedure was repeated for the 8 NLOS
receiver positions shown in Figure 8.

B. Hardware and Post-processing

The channel measurements were performed with a UWB
channel sounder. An arbitrary waveform generator (AWG) that
can generate signals up to 12 GHz with a sampling rate of 24
GS/s is used at transmitter. A digital sampling scope (DSO)
operating at 40 GS/s is used at receiver for data acquisition.
The transmitter and receiver were synchronized using a trigger
signal. A pair of UWB Skycross Omni-directional antennas
was used at transmitter and receiver. The transmitter sends
several repetitions of a multitone OFDM-like waveform, p(t),
continuously. The transmitted waveform has a frequency range
of 3 GHz – 10 GHz with a center frequency of 6.5 GHz.
The frequency band is divided into 9559 sub carriers with a
uniform spacing of 732.42 KHz. Each waveform is 1.36 µs
long and we store N = 50 such waveforms at the DSO
for every measurement. We also record 3.45 µs of receiver
noise (transmitter off) for every measurement. This is used to
compute the noise power, N0, and to set the parameters during
the post processing. More details about the hardware and the
excitation signal can be found in [10].

Since the measurements were conducted close to campus
buildings with WiFi access points and devices, there was
significant interference. The received signal is thus first passed
through a band pass filter to remove the out of band inter-
ference. The template signal for the CLEAN algorithm was
obtained from a measurement taken with the setup in the
anechoic chamber at USC, with a known distance between
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transmitter and receiver and thus includes the distortions by
the antennas.

The time-hopping signal is obtained from the multitone
received signal as follows: Let yk(t) be the filtered received
signal for a receiver at position k. It is divided into N disjoint
intervals, each of Tf = 1.36 µs long. Let the resulting

waveforms be
{

y
(n)
k (t)

}N−1

n=0
. The time-hopping signal is

obtained by introducing a shift to each of the N waveforms
and adding them back together.

yTH
k (t) =

N−1∑
n=0

y
(n)
k (t− nTf − ck(n)Tc), (18)

where ck(n) ∈ {0, 1, · · · , 127} is the chip sequence assigned
to receiver at position k and Tc = Tf

128 is the chip duration.
ck(n) is generated i.i.d. from the set {0, 1, · · · , 127}.

Since only one AWG and one DSO were used in the mea-
surements, the MUI is simulated by adding the measurements
taken at different receiver positions. Since the transmitter
location is same for all the measurements, assuming that the
channel is reciprocal, this has the same effect as if multiple
users were transmitting at the same time. For instance, I = 3
level MUI can be simulated by adding the time-hopping
received waveforms at positions 5, 6 and 7 as interference
to the time-hopping received waveform at position 1.

C. Performance Evaluation with Measurement Data

We now evaluate the performance of the proposed ranging
scheme with the measurement data, and compare it with the
two thresholding schemes. For the performance evaluation
with the proposed scheme, γ∗ and W ∗ are chosen according
to the discussion in Sec. IV-D. Assuming that no knowledge
of I was available, N̄ = 0.02W ∗N and N̄ = N

2 are used for
AWGN (I = 0) and MUI respectively. For the lookup table
thresholding scheme, the optimal threshold for LOS/NLOS
scenarios is computed as follows: For every receiver posi-
tion, the SNR and SIR are computed by averaging over the
small scale fading and the Monte Carlo simulations were
performed for these parameter settings and with CM5 (outdoor
LOS)/CM6 (outdoor NLOS) channel models. The correlation
threshold, η, with the minimum RMSE is picked. Since the
transmitted pulse p(t) is a long multi-tone waveform, the
energy based non-coherent schemes suffer from poor SNR and
hence the corresponding performance curves are not shown.
The channel impulse response can also be computed from
the channel transfer function and by applying a threshold,
the noise and interference can be separated from the ToA of
the desired user. The performance with this approach is not
included as it is inferior to the thresholding schemes.

Figure 9 compares the CDF of the ranging error, (d̂ − d),
for different ranging schemes 3, when both the desired user
and interfering users are in LOS scenario. Results are shown

3Please note that the setup here is very similar to the simulation setup used
for Fig. 7, where the SIR from different users can be different. While Fig. 7
plots the RMSE as a function of transmit power, for the measurements we
only plot the CDF of the ranging error as all the measurements were taken
for a fixed transmit power.

Fig. 8. NLOS measurement floor map of USC VHE quad.

for I = 0 (No MUI), 1, 5, and 8. In the absence of MUI,
the ranging errors have a negative bias. This is because the
threshold is chosen conservatively so as to minimize the
RMSE, thereby resulting in higher early false alarms from
noise peaks. While the proposed ranging scheme has slightly
more RMSE than the lookup table thresholding scheme for
I = 0 4, it gives significantly lower RMSE than the lookup
table thresholding scheme in the presence of MUI. While the
ranging error with the proposed scheme is always less than
0.5 m, it is more than 20 m for 10% of times with the
lookup table thresholding scheme when I = 5. The large
negative errors are because of the early false alarms from
interference MPCs. While the proposed scheme is robust to
the number of interfering users, the performance with the
lookup table thresholding scheme degrades as I increases.
Genie thresholding outperforms the other ranging schemes in
this case.

Figure 8 gives the floor map of the NLOS measurement site
with its dimensions. For these receiver locations, the direct
path is completely blocked by the buildings. The only viable
signal paths are diffractions around the corners of the buildings
and reaching the receiver as shown. In the absence of MUI, the
ranging errors (with both the proposed ranging scheme and the
thresholding schemes) for the measurements taken at receiver
positions 1–6 was less than 5 m. But for the measurements
taken at receiver positions 7 and 8, it was 18–20 m. As
shown in the figure, for the receiver positions 7 and 8, the
shortest measurable signal path is the reflection from building
4, followed by diffraction at building 3. This path length is
12 m larger than the Euclidean distance between transmitter
and receiver. However, the diffraction angle at building 3 is
60 degrees. Hence, the ray undergoes significant loss from
diffraction and the corresponding MPC is not detectable. The
next shortest path is from double reflection at buildings 4 and
5 as shown in Figure 8. This path length is 18 m more than the
Euclidean distance. Since the RMSE is dominated by receiver
positions 7 and 8, we exclude the corresponding measurements
for the performance comparison of different ranging schemes.
Results including these receiver positions are given in [5].

4The measured RMSE of 0.12 m is comparable (though slightly higher)
than 0.08 m which is reported in [28].
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Fig. 9. Ranging error comparison for different schemes, when both desired and interfering users are in LOS scenario (N = 50).
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Figure 10 compares the CDF of the ranging error for
different ranging schemes, when both the desired user and
interfering users are in the NLOS scenario. In the AWGN
channel (no MUI), all the three schemes have positive bias in
the ranging error, as the direct path is blocked by the buildings.
The proposed ranging scheme is as good as the lookup table
thresholding scheme. Even with just one interfering user, the
proposed scheme gives considerably lower RMSE than both
the thresholding schemes. While the ranging error with the
proposed scheme is always less than 5 m, it can be more
than 15 m with the thresholding schemes. While the proposed
scheme is robust to the number of interfering users, the
performance with the thresholding schemes degrades as I
increases. The impact of MUI is more significant in NLOS
scenarios and even the genie thresholding scheme cannot
suppress the MUI effectively.

VII. CONCLUSIONS

In this paper, we proposed a novel coherent ranging al-
gorithm to mitigate the MUI. We considered time-hopping
impulse radio. We observed that after de-hopping the received
signal, receiver effectively sees multiple waveforms in which
signal MPC occurs at same location, but interference MPC
location for different waveforms is different. Using this ob-
servation, we were able to separate the interference MPCs
and hence remove their contribution from the received signal.
We also derived the performance bounds with the proposed
ranging scheme. Using the IEEE 802.15.4a CM1 channel
model as well as measured data, we showed the robustness of
the proposed ranging scheme to the strength of interference
and the number of interfering users.
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APPENDIX

A. False alarms from a noise peak

A noise peak occurs in the interval [τ −W, τ + W ], in
the kth waveform (k > 1), if |Nk(t)| > µ for some
t ∈ [τ −W, τ + W ]. It can be upper bounded as

P (
Noise peak in [τ −W, τ + W ] in kth waveform

)

= P (∃t ∈ [τ −W, τ + W ] , |Nk(t)| > µ)

≤ 2WP
(
|Nk(t)|2 > µ2

)
= 2W exp

(
− µ2

N0

)
. (19)

Since it is assumed that the noise peak happens in the first
waveform, the algorithm makes false detection of τ as a signal
MPC, if at least N̄ − 1 of the N − 1 waveforms have a noise
peak in [τ −W, τ + W ] and there exists a circle of radius γ
enclosing at least N̄ of these points, including X1. Let Event 1
, {m − 1 out of N − 1 waveforms have a noise peak in
[τ −W, τ + W ]} and Event 2 , {∃ circle enclosing at least

N̄ of m points, including X1}. The false alarm probability
can be upper bounded by

Pf,N ≤
N∑

m=N̄

P (Event 1, Event 2)

≤
N∑

m=N̄

min(P (Event 1) ,P (Event 2)) . (20)

Using (19), we have P (Event 1) ≤(
N−1
m−1

)(
2W exp

(
− µ2

N0

))m−1(
1− 2W exp

(
− µ2

N0

))N−m

.

Let X1, X2, · · · , Xm be the strength of the m noise peaks
(|Xi| > µ). Using union bound,

P(Event 2)≤
m∑

l=1

P
(

at least N̄ of m points, including X1,

enclosed by circle around Xl

)

=(m−1)P
(
at least N̄ of m points, including X1,

enclosed by circle around X2

)

+P(
at least N̄ of m points are enclosed by circle around X1

)
.

(21)

We will now evaluate each of the above two terms. The first
term is given by

P
(

at least N̄ of m points, including X1,

enclosed by circle with center X2 and radius γ
)

=
m∑

k=N̄

(
m−2
k−2

)
P
(
|X1−X2|<γ,

k∏

j=3

|Xj−X2|<γ,

m∏

j=k+1

|Xj−X2|>γ

)

=
m∑

k=N̄

(
m−2
k−2

) ∫
P (|X1−x2|<γ)

k∏

j=3

P (|Xj−x2|<γ)

×
m∏

j=k+1

P (|Xj−x2|>γ) fX2(x2)dx2

=
m∑

k=N̄

(
m−2
k−2

)∫ ∞

0


1−Q1




√
2y

N0
,

√
2γ2

N0







k−1

×Q1




√
2y

N0
,

√
2γ2

N0




m−k

1
N0

exp
(
− y

N0

)
dy, (22)

where Q1(., .) is the Marcum Q-function. We have used the
fact that

{
|Xi|2

}m

i=1
are i.i.d. Exponential RVs with mean

N0 and {|Xi − x2|}m
i=3 are i.i.d. Rice RVs with parameters

|x2| and
√

N0
2 [1]. The second term in (21) can similarly be
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shown to be

P
(

at least N̄ of m points are enclosed by circle

with center X1 and radius γ
)

=
m∑

k=N̄

(
m−1
k−1

)∫ ∞

0


1−Q1




√
2y

N0
,

√
2γ2

N0







k−1

×Q1




√
2y

N0
,

√
2γ2

N0




m−k

1
N0

exp
(
− y

N0

)
dy. (23)

Using (22) and (23) in (21) and further using it in (20), the
false alarm probability from a noise peak follows after some
simplification.

B. False alarms from an interference MPC

Interference peak occurs in the interval [τ −W, τ + W ],
in the kth waveform (k > 1), if at least one interference
MPC arrives in the interval [τ −W, τ + W ], and the strength
of the interference exceeds the threshold µ. Since µ is
small, we assume that the strength of interference always
exceeds threshold, whenever an interference MPC arrives in
[τ −W, τ + W ]. Hence, the probability of an interference
peak is upper bounded by

P(
Interference peak in [τ−W, τ +W ] , in the kth waveform

)

≤P(at least one interference MPC arrives in [τ−W, τ +W ])
= 1− exp (−2WIλ) . (24)

We have used the fact that interference MPC arrivals are
Poisson with parameter λI . Since it is assumed that an
interference peak happens in the first waveform, the algorithm
makes false detection of τ as a signal MPC, if at least N̄−1 of
the N−1 waveforms has interference peak in [τ −W, τ + W ]
and there exists a circle of radius γ enclosing at least N̄ of
these points, including X1. Let Event 1 , {m − 1 out of
N − 1 waveforms has interference peak in [τ −W, τ + W ]}
and Event 2 , {∃ circle enclosing at least N̄ of m points,
including X1}. The false alarm probability is upper bounded
by

Pf,I ≤
N∑

m=N̄

P (Event 1, Event 2)

≤
N∑

m=N̄

min(P (Event 1) ,P (Event 2)) . (25)

Using (24), we have P (Event 1) ≤(
N − 1
m− 1

)
(1− exp (−2WIλ))m−1exp (−2WI(N −m)λ) .

Event 2 is very similar to the noise case, except that{
|Xi|2

}m

i=1
are now i.i.d. Exponential RVs with mean

EI . Hence, replacing N0 with EI in (22) and (23), and
further using it in (25), the false alarm probability from an
interference peak follows.

C. Signal MPC detection

A signal MPC is detected in the interval [τ −W, τ + W ],
in the kth waveform, if the offset in the location estimate by
CLEAN is less than W and the strength of the estimate, Xk =
α + Nk, exceeds the threshold µ. The detection probability is
given by

p(α) , P
(

signal MPC is detected in [τ −W, τ + W ] ,

in the kth waveform
)
≈P(|τ−τ̂ |≤W)P(|Xk|>µ)

=


1−Q



√
|α|2
N0

(1−Rp(2W ))




Q1



√

2 |α|2
N0

,

√
2µ2

N0


. (26)

For some of the waveforms, an interference MPC can overlap
with the signal MPC at τ . Let Event 1, {No interference in
[τ −W, τ + W ] , in m + k out of N waveforms}, Event 2,
{Signal MPC detected in [τ −W, τ + W ] , in m out of m+k
waveforms}, and Event 3, {∃ circle enclosing at least N̄ out
of m points}. We assume that interference is strong enough
that the resulting MPC estimates at τ in these waveforms are
far away from true value, α, and hence will be outside the
circle. Hence the detection probability is lower bounded by

Pd ≥
N∑

m=N̄

N−m∑

k=0

P (Event 1,Event 2,Event 3)

=
N∑

m=N̄

N−m∑

k=0

P (Event 1)P (Event 2|Event 1)

× P (Event 3|Event 1, Event 2) . (27)

Using (24), we have P (Event 1) =(
N

m+k

)
exp(−2WλI(m+k)) (1−exp (−2WλI))N−m−k

.

Using (26), we have P (Event 2|Event 1) =(
m+k

m

)
p(α)m (1−p(α))k

. We will now evaluate the

conditional probability term. Let
{
Xi ,α+Ni, 1≤ i≤m

}

be the strength of the m detected MPCs that are free
from interference. The conditional probability can be lower
bounded as

P (Event 3|Event 2, Event 1) ≥ P
(

circle centered at X1

with radius γ encloses at least N̄ points
Event 1, Event 2

)

=
m∑

l=N̄

(
m− 1
l − 1

)
P
(

l∏

j=2

|Nj −N1| <γ,

m∏

j=l+1

|Nj −N1| >γ

 |α+N1|>µ, · · · , |α+Nm|>µ

)

=
m∑

l=N̄

(
m− 1
l − 1

)∫

n1:|α+n1|>µ

P
(
|N−n1|<γ

 |α+N |>µ
)l−1

×P
(
|N−n1|>γ

 |α+N |>µ
)m−l

fN1(n1)dn1. (28)

The conditional probability term in (28) can
be written as P

(
|N−n1|<γ

 |α+N |>µ
)

=
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P(|N−n1|<γ, |α+N |>µ)P (|α + N | > µ)−1. Since
N is a complex Gaussian RV with variance N0,

we have P (|α + N | > µ) = Q1

(√
2|α|2
N0

,
√

2µ2

N0

)
.

Since µ , 2.12
√

N0 is small, for |α|2 >> N0, we
have P(|N−n1|<γ, |α+N |>µ) ≈ P(|N−n1|<γ) =

1−Q1

(√
2|n1|2

N0
,
√

2γ2

N0

)
. Hence we have

q(α, |n1|),P
(
|N−n1|<γ

|α+N |>µ
)

≈

1−Q1



√

2 |n1|2
N0

,

√
2γ2

N0




Q1



√

2 |α|2
N0

,

√
2µ2

N0



−1

. (29)

Note that |N1| is a Rayleigh RV and ∠N1 is a uniform RV.
Rewriting the integral in (28) in polar coordinates and

evaluating it over ∠N1, we get
∫∫

r,θ:cos(θ−∠α)>
µ2−|α|2−r2

2r|α|

q(α, r)l−1 (1− q(α, r))m−l r

πN0
exp

(
− r2

N0

)
drdθ

=
∫ ∞

max(µ−|α|,0)
q(α, r)l−1 (1−q(α, r))m−l r

πN0
exp

(
− r2

N0

)
g(r)dr, (30)

where g(r) = 2 cos−1
(

µ2−|α|2−r2

2r|α|
)

for r ∈ (|µ−|α||,|α|+µ)
and is 2π otherwise.

Hence the detection probability follows.

REFERENCES

[1] A. F. Molisch, Wireless Communications. New York: IEEE Press/Wiley,
2ed., 2011.

[2] A. F. Molisch, D. Cassioli, C. C. Chong, S. Emami, A. Fort, B. Kannan,
J. Karedal, J. Kunisch, H. G. Schantz, K. Siwiak, and M. Z. Win,
“A comprehensive standardized model for ultrawideband propagation
channels,” IEEE Transactions on Antennas and Propagation, vol. 54,
no. 11, pp. 3151–3166, November 2006.

[3] P. Bahl and V. N. Padmanabhan, “RADAR: An In-Building RF-based
User Location and Tracking System,” Proc. IEEE Conference on Com-
puter Communications (INFOCOM), 2000.

[4] B. Li, A. G. Dempster, J. Barnes, C. Rizos, and D. Li, “Probabilistic
algorithm to support the fingerprinting method for CDMA location”, Int.
Symp. On GPS/GNSS, Hong Kong, 8-10 Dec. 2005.

[5] V. Kristem, S. Niranjayan, S. Sangodoyin, and A. F. Molisch, “Ex-
perimental Determination of UWB Ranging Errors in an Outdoor
Environment”, to appear in ICC., 2014.

[6] M. Z. Win and R. A. Scholtz, “Impulse radio: How it works”, IEEE
Commun. Lett., vol. 2, pp. 36–38, 1998.

[7] J. A. Hogbom, “Aperture Synthesis with a Non-Regular Distribution of
Interferometer Baselines,” Astronomy and Astrophysics Supplement Ser.,
vol. 15, 1974.

[8] R. J. M.Cramer, R. A. Scholtz, M. Z. Win, “Evaluation of an Ultra-
wide-Band Propagation channel,” IEEE Transactions on Antenna and
Propagation, Vol.50, no.5, pp.561–570, May 2002.

[9] Muqaibel, A.; Safaai-Jazi, A.; Woerner, B.; Riad, S.; “UWB channel
impulse response characterization using deconvolution techniques,” 45th
Midwest Symposium on Circuits and Systems, Volume 3, Aug. 2002.

[10] S. Sangodoyin, S. Niranjayan and A. F. Molisch, “Ultrawideband Near-
Ground Outdoor Propagation Channel Measurements and Modeling,” in
Proc. 7th EuCAP, Gothenburg, Sweden. April 2013.

[11] H. L. Van Trees, “Detection, Estimation, and Modulation Theory”, 1968
:Wiley.

[12] S. Bellini and G. Tartara, “Bounds on error in signal parameter estima-
tion,” IEEE Trans. Commun., vol. 22, pp.340–342, 1974.

[13] D. Chazan , M. Zakai and J. Ziv, “Improved lower bounds on signal
parameter estimation,” IEEE Trans. Inf. Theory, vol.IT-21, pp.90–93
1975.

[14] J. Zhang , R. A. Kennedy and T. D. Abhayapala, “Cramer-Rao lower
bounds for the synchronization of UWB signals,” EURASIP J. Wireless
Commun. Netw., vol.3, 2005.

[15] D. Dardari, C. C. Chong, M. Z. Win, “Improved Lower Bounds on
Time-of-Arrival Estimation Error in Realistic UWB Channels,” Proc.
IEEE Int. Conf. Ultra-Wideband (ICUWB), pp.531–537 2006.

[16] M. Z. Win and R. A. Scholtz, “Characterization of ultra-wide bandwidth
wireless indoor communications channel: A communication theoretic
view,” IEEE J. Sel. Areas Commun., vol.20, pp.1613–1627 2002.

[17] H. Saarnisaari, “ML time delay estimation in a multipath channel,” Proc.
IEEE Int. Symp. Software Test. Anal. (ISSTA), pp.1007–1011 1996.

[18] J. Y. Lee and R. A. Scholtz, “Ranging in a dense multipath environment
using an UWB radio link,” IEEE J. Sel. Areas Commun., vol.20,
pp.1677–1683 2002.

[19] C. Falsi , D. Dardari , L. Mucchi and M. Z. Win, “Time of arrival
estimation for UWB localizers in realistic environments,” EURASIP J.
Appl. Signal Process. (Special Issue on Wireless Location Technologies
and Applications), pp.1–13 2006.

[20] I. Guvenc and Z. Sahinoglu, “Threshold-based TOA estimation for
impulse radio UWB systems,” Proc. IEEE Int. Conf. Ultra-Wideband
(ICUWB), pp.420–425 2005.

[21] I. Guvenc , Z. Sahinoglu , A. F. Molisch and P. Orlik, “Non-coherent
TOA estimation in IR-UWB systems with different signal waveforms,”
Proc. IEEE Broadband Netw. (BROADNETS), vol. 2, pp.1168–1174
2005.

[22] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, M. Z. Win, “Ranging With
Ultrawide Bandwidth Signals in Multipath Environments,” Proceedings
of the IEEE, vol.97, no.2, pp.404–426, Feb. 2009.

[23] S. Gezici, Z. Sahinoglu, A. F. Molisch, H. Kobayashi, and H. V. Poor,
“Two-Step Time of Arrival Estimation for Pulse-Based Ultra-Wideband
Systems,” EURASIP Journal on Advances in Signal Processing,vol.
2008.

[24] A. Giorgetti and M. Chiani, “Time-of-Arrival Estimation Based on
Information Theoretic Criteria,” Signal Processing, IEEE Transactions
on, vol.61, no.8, pp.1869–1879, Apr. 2013.

[25] Z. Sahinoglu and I. Guvenc, “Multiuser interference mitigation in
noncoherent UWB ranging via nonlinear filtering,” EURASIP J. Wireless
Commun. Netw., pp.1–10 2006.

[26] D. Dardari , A. Giorgetti and M. Z. Win, “Time-of-arrival estimation of
UWB signals in the presence of narrowband and wideband interference,”
Proc. IEEE Int. Conf. Ultra-Wideband (ICUWB), pp.71–76 2007.

[27] A. G. Amigo, A. Mallat, and L. Vandendorpe, “Multiuser and Multipath
Interference Mitigation in UWB TOA Estimation,” Proc. IEEE Int. Conf.
Ultra-Wideband (ICUWB), pp.465–469 2011.

[28] Yuan Zhou, C. L. Law, Jingjing Xia, Kee Siang Koh, “Long range UWB
localization system: From design to measurement,” Proc. IEEE Int. Conf.
Ultra-Wideband (ICUWB), pp.1–4 2010.

PLACE
PHOTO
HERE

Vinod Kristem received his Bachelor of Technology
degree in Electronics and Communications Engi-
neering from the National Institute of Technology
(NIT), Warangal in 2007. He received his Master
of Engineering degree in Telecommunications from
the Dept. of Electrical Communication Engineering,
Indian Institute of Science, Bangalore, India in 2009.
From 2009–2011, he was with Beceem Communica-
tions Pvt. Ltd., Bangalore, India (which was recently
acquired by Broadcom Corp.), where he worked on
channel estimation and physical layer measurements

for WiMAX and LTE. He is currently working toward his Ph.D. degree with
the Department of Electrical Engineering, University of Southern California,
Los Angeles. His research interests include the design and analysis of receiver
algorithms for wireless communication networks, Antenna selection in MIMO
systems, and cooperative localization in wireless networks.



15

PLACE
PHOTO
HERE

Andreas F. Molisch (S’89-M’95-SM’00-F’05) re-
ceived the Dipl. Ing., Ph.D., and habilitation degrees
from the Technical University of Vienna, Vienna,
Austria, in 1990, 1994, and 1999, respectively. He
subsequently was with AT&T (Bell) Laboratories
Research (USA); Lund University, Lund, Sweden,
and Mitsubishi Electric Research Labs (USA). He
is now a Professor of Electrical Engineering with
the University of Southern California, Los Ange-
les.

His current research interests are the measurement
and modeling of mobile radio channels, ultra-wideband communications
and localization, cooperative communications, multiple-input-multiple-output
systems, wireless systems for healthcare, and novel cellular architectures. He
has authored, coauthored or edited four books (among them the textbook
Wireless Communications, Wiley-IEEE Press), 16 book chapters, some 160
journal papers, and numerous conference contributions, as well as more than
70 patents and 60 standards contributions.

Dr. Molisch has been an Editor of a number of journals and special
issues, General Chair, Technical Program Committee Chair, or Symposium
Chair of multiple international conferences, as well as Chairman of various
international standardization groups. He is a Fellow of the IEEE, Fellow of the
AAAS, Fellow of the IET, an IEEE Distinguished Lecturer, and a member of
the Austrian Academy of Sciences. He has received numerous awards, most
recently the Donald Fink Prize of the IEEE, and the Eric Sumner Award of
the IEEE.

PLACE
PHOTO
HERE

S Niranjayan (S’03-M’10) received the B.Sc. Eng.
degree with first class honors in electronic and
telecommunication engineering from the University
of Moratuwa, Sri-Lanka, in 2001, the M.Eng. degree
in electrical engineering from the National Uni-
versity of Singapore (NUS), Singapore, in 2004,
and the Ph.D. degree in electrical engineering from
the University of Alberta, Edmonton, Canada in
2010. Dr. Niranjayan was a recipient of the National
University of Singapore (NUS) graduate scholarship.
He has been a recipient of the Alberta Ingenuity

graduate student scholarship and the iCORE post graduate scholarship during
2006-2010. He also received the Natural Sciences and Engineering Research
Council of Canada’s (NSERC) postdoctoral fellowship award during 2011
and 2012. Since 2011 he has been a postdoctoral fellow at the University of
Southern California, Los Angeles, CA.

PLACE
PHOTO
HERE

Seun Sangodoyin received his B.Sc in Electrical
Engineering from Oklahoma State University in May
2007, M.Sc in the same field at the University of
Southern California (USC) in 2009, he is currently
working toward his Ph.D in Electrical Engineering at
the University of Southern California (USC). His re-
search interest includes Measurement-based MIMO
channel Modeling and analysis, UWB MIMO Radar,
Parameter Estimation, Body area Networks and
Stochastic dynamical Systems.


