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Abstract—Wireless localization systems based on determina-
tion of signal runtime (TOA/TDOA) are of great importance
for a variety of applications. In many cases, synchronization of
the clocks of the agent nodes to those of the network nodes
(anchors) has to be performed together with the localization.
The current paper investigates the fundamental accuracy limits
of such a joint localization/synchronization. In particular we
analyze the impact of allocating power to the different anchor
nodes, and optimize this power allocation to maximize accuracy.
Simulation results confirm the importance of proper power
allocation; known special cases (TDOA localization, localization
with already-synchronized clocks) are recovered from our general
solution.

I. INTRODUCTION

Recently, wireless sensor networks (WSNs) have received
significant attentions due to their wide area of applications,
such as environment monitoring, remote sensing and target
tracking, etc. Network localization and synchronization are
two main technical bases of WSNs. Operations such as re-
source management, data collection and transmission are all
dependent to position information. Usually it is important
to know not only the measurements themselves, but also
where the measurements were obtained in WSNs [1], [2].
Synchronization is also challenging due to many factors, such
as imperfect clock parameters (clock skew and offset) in each
individual node implementations. Localization results rely on
the timing accuracy directly. Even small timing differences
among nodes cause significant localization errors.

Usually, location-aware networks consist of a limited num-
ber of anchors with known positions and many agents with
unknown positions. Wireless localization refers to a process
where the agents perform position estimation with respect
to the anchors by different ways of measurements, such as
received signal strength intensity (RSSI), angle of arrival
(AOA), time of arrival (TOA), etc [3]. Time based metrics are
obtained by measuring the signal propagation time between
nodes. One-way and round-trip time of flight can be applied
in synchronous and asynchronous networks, respectively. Al-
ternatively, time difference of arrival (TDOA) provides another
solution to asynchronous localization, in which synchroniza-
tion is required among anchors, but not necessarily with the
agents.

In [4] and [5], the fundamental limits of wideband local-
ization have been derived in terms of Cramer Rao Lower
Bound (CRLB). This, and related, work is mostly based on the
assumptions that all nodes are perfectly synchronized, and one-
way time of flight measurements are thus considered. Since
time synchronization is challenging in wireless networks,
TDOA is also attractive, even if there exists obvious perfor-
mance degradation compared to the TOA based approaches
[6].

The problem of network clock synchronization is, in itself, a
challenging and relevant problem (see [7] and references there-
in). In most related papers, synchronization and localization
are performed separately [8]. Some recent work has considered
the use of TOA measurements to obtain joint localization
and synchronization [9]. Ref [10] also shows that a better
performance can be achieved by joint estimation rather than
doing it separately.

In WSNs, transmit power is usually limited due to the bat-
tery capacity, regulatory constraints, and the created amount of
co-channel interference. Power allocation has thus been widely
applied for improving energy efficiency and network lifetime.
Optimal and robust power allocation has been carried out in
synchronous localization networks [11], [12], etc. However,
to the best of the authors’ knowledge, power allocation and
optimization problems in asynchronous localization networks
have not yet been addressed.

In this paper, we first derive the global equivalent Fisher
information matrix (EFIM) of both localization and synchro-
nization accuracy. After that, we establish general power
allocation frameworks for asynchronous localization networks.
We take the CRLBs of localization, synchronization and joint
estimations as objective functions, respectively. All power
allocation problems are proved to be convex. Optimal power
allocation solutions can be achieved by the proposed frame-
works, which are subject to global resource constraints.

II. SYSTEM MODEL

We consider a 2-D location-aware network of Nb anchors
with known positions and Na agents with unknown posi-
tions.1 The sets of agents and anchors are represented by

1We only consider the 2-D scenario in this paper, while the 3-D localization
problem can be solved straightforwardly.



Na = {1, 2, ..., Na} and Nb = {Na + 1, Na + 2, ..., Na +Nb}
respectively. The position of node k is denoted by pk =
[xk, yk]

T
, k ∈ Na ∪Nb. We assume the Nb anchors are

synchronized, while there exists a clock offset υk between the
agent k and anchors. The distance between agent k and anchor
j is denoted by

dkj = ∥pk − pj∥2 (1)

where || · ||2 denotes the ℓ-2 norm. The angle from node k to
j is given by

ϕkj = arctan (
yk − yj
xk − xj

) (2)

In this paper, anchors broadcast signals throughout the net-
work, agents then perform range and position estimation by
TOA estimation. The received signal at agent k from anchor
j is

rkj(t) = αkjs(t− τkj) + zkj(t) (3)

where αkj and τkj represent the amplitude and time delay
on the link between k and j, respectively. zkj(t) is the
measurement noise modeled as a zero-mean Gaussian random
variable, and the power spectral density is N0

2 . The measured
time delay τkj can be obtained as

τ̂kj =
1

c
dkj + υk + nk =

1

c
||pk − pj ||+ υk + nk (4)

where c is the propagation speed of signal. nk is the estimation
noise modeled as Gaussian distribution.

We use θ to represent the position related parameter vector
to be estimated.

θ = [pT, d0,α
T]T (5)

where d0 = cυk is the equivalent distance bias caused by the
clock offset at agent k. αT = [α1, α2, ...αNb

]T denotes the
amplitudes from Nb anchors, which are essentially nuisance
parameters in our work.

III. CRAMER-RAO LOWER BOUND

In this part, we consider a single agent scenario (Na = 1),
while the general multiple agents scenario will be extended lat-
er.2 The CRLB determines a lower bound on the performance
(variance) of any unbiased estimator, which can be applied as
the performance metrics of localization and synchronization.
We first derive the global EFIM. After that, the corresponding
EFIM of p and d0 can be obtained accordingly.

Proposition 1: The global EFIM of position p and distance
bias d0 (equivalent to the clock offset) joint estimation can be
represented as

JJ(p, d0) =

Nb∑
j=1

λj

(
qjq

T
j qj

qT
j 1

)

=

Nb∑
j=1

λjD(p,d0)(ϕj) (6)

2The subscript of k in section II is thus omitted for simplification.

where

D(p,d0)(ϕj) = vjv
T
j (7)

vj = [cosϕj , sinϕj , 1]
T (8)

qj = [cosϕj , sinϕj ]
T (9)

λj =
8π2β2

j SNRj

c2
(10)

βj ,

√√√√∫ +∞
−∞ f2|S(f)|2df∫ +∞
−∞ |S(f)|2df

(11)

SNRj ,
|αj |2

∫ +∞
−∞ |S(f)|2df
N0

(12)

where SNRj is the signal to noise ratio of the transmitted
signals from anchor j. S(f) is the Fourier transform of s(t),
N0 is the power spectral density of the additional white
Gaussian noise (AWGN).

Proof: Omitted due to space constraints. See [5] and [13]
and references therein.

Based on the global EFIM in (6), we try to extract the indi-
vidual EFIMs for position (JL(p)) and clock offset (JS(d0))
errors according to the definition of EFIM in [5], which is the
Schur complement of the original FIM.

JL(p) =

Nb∑
j=1

λjqjq
T
j −

1∑Nb

j=1 λj

Nb∑
j=1

λjqj

Nb∑
j=1

λjq
T
j (13)

JS(d0) =

Nb∑
j=1

λj −
Nb∑
j=1

λjq
T
j

( Nb∑
j=1

λjqjq
T
j

)−1
Nb∑
j=1

λjqj

(14)

As indicated in [14], [15], λj is termed “ranging information
intensity (RII)”, which can be used to describe the ranging per-
formance. RII is the inverse of the CRLB of TOA estimation
in additional white Gaussian noise (AWGN), which can be
generally simplified as

λj = ξj
wjβ

2
j

dϱj
(15)

where ξj indicate the channel gain of the link between agent
and anchor j. wj and βj are transmit power and effective
bandwidth of anchor j. ϱ is the pathloss coefficient.

Remarks 1: As shown in (6), JJ(p, d0) is a 3 × 3 matrix,
which shows that each anchor adds ranging information for
joint estimation of p and d0 weighted by λj .

Remarks 2: The EFIM of position estimation in (13) is
exactly the same as the results obtained in TDOA [6]. It
implies that, if there are uncertainties in the clock informa-
tion, asynchronous TOA localization is equivalent to TDOA
localization.

Remarks 3: If the network were perfectly synchronized,
JJ(p, d0) will reduce to a 2 × 2 EFIM proposed in [5].
Obviously, the unknown clock offset reduces the ranging
information, and CRLB of position estimation will increase
with respect to the clock offset estimation errors.



If there are multiple agents inside the network, the corre-
sponding global EFIM is a 3Na × 3Na matrix block diagonal
matrix. The ith element of the matrix is JJ(pi, d0) in (6).

IV. OPTIMAL POWER ALLOCATION PROBLEMS

In this section, we perform the optimal power allocation
problem with different objective functions. To simplify the
notations, we consider the single-agent scenario, the multiple-
agent problem can be solved analogously.

A. Power allocation for synchronization

We first consider the timing synchronization problem, which
is important in wireless networks. Clock offset estimation error
is tried to be optimized by properly allocating power resources
among anchors.

The EFIM of clock offset estimation is given in (14), by
which the CRLB can be achieved as

E{||d̂0 − d0||2} ≥ PS(d0) , tr{J−1
S (d0)} (16)

We set the error bound of clock offset estimation as the ob-
jective function to be minimized. The corresponding problem
can be formulated as

P1 : min . PS(d0;w) (17)
s.t. 0 ≤ wj ≤ w0 j ∈ Nb (18)∑

j∈Nb

wj ≤ wtotal (19)

In P1, we use w = [w1, ...wNb ]
T to indicate the power

allocation vector among anchors. Constraint (18) shows that
each node has a peak power constraint w0 due to the hardware
design, e.g., power amplifier saturation. (19) gives the upper
bound of the total power (wtotal) that can be used in the whole
network.

Proposition 2: The problem P1 is convex in w.
Proof : Since the constraints (18) and (19) are affine, we

only need to prove the objective function (17) is convex in w.
According to (14), JS(d0) can be rewritten as

JS(d0) =

Nb∑
j=1

λj − f(λ) (20)

where

f(λ) =

Nb∑
j=1

λjq
T
j

( Nb∑
j=1

λjqjq
T
j

)−1
Nb∑
j=1

λjqj

= BTA−1B (21)

(21) is a scalar function of λ, and furthermore, λ is also a
linear function of w. Note that PS(d0) = 1

JS(d0)
. Therefore,

we only need to prove that (21) is convex in λ, the proof of
this proposition is thus complete.

Given any γ ∈ [0, 1], λ and λ′, we can prove the convexity
of (21) according to the definitions of convex optimization,
i.e.,

f(γλ+ (1− γ)λ′) ≤ γf(λ) + (1− γ)f(λ′)} (22)

The details of (22) is omitted here due to the space constraints.
According to proposition 2, optimal power vector w⋆

S can
be achieved by solving P1 through many of the shelf solvers,
such as SDPT3 and Mosek, etc.

B. Power allocation for localization

Position information is what we really care in location-
aware networks. Similar to the previous problem, the perfor-
mance metric is defined as

E{||p̂− p||2} ≥ PL(p) , tr{J−1
L (p)} (23)

where JL(p) is shown in (13).
We then can formulate a problem that minimizing the

localization error.

P2 : min . PL(p;w) (24)
s.t. (18)− (19) (25)

Proposition 3: Problem P2 is convex in w.
Proof: See Appendix.
Therefore, we can achieve the global optimal solution (w⋆

L)
of P2 according to proposition 3.

C. Power allocation for joint synchronization and localization

In this part, we try to formulate a power allocation problem
for joint synchronization and localization. Since P1 and P2

are both convex, the power allocation problem is formulated
as

P3a : min PL(p;w) (26)
s.t. PS(d0;w) ≤ ε (27)

(18)− (19)

in which we set the objective function as the CRLB of position
error. Constraint (27) shows that there exists a threshold
for synchronization accuracy. Apparently, P3a is a convex
problem and can be solved easily. We can similarly formulate
another convex synchronization-optimized problem P3b,

P3b : min PS(d0;w) (28)
s.t. PL(p;w) ≤ δ (29)

(18)− (19)

V. NUMERICAL RESULTS AND DISCUSSIONS

A. Network settings

In this section, we present numerical results for performance
evaluation. The total power for all nodes is normalized, i.e.,
wtotal = 1. A simple network with Na agents and Nb anchors
are deployed inside a square area i.e., U([0, 10]× [0, 10]) (see
Fig. 1). The channel gain is determined by the free-space
pathloss only, and the pathloss coefficient is set as 2 [11],
[15]. The channel parameters is given by ξkj/d

2
kj = 104/d2kj .

c is the light speed in free space, i.e., 3×108m/s. The proposed
power allocation problems are all solved by the standard solver
package CVX [16].
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Fig. 1. The location-aware network with Nb anchors and Na agents
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Fig. 2. Position estimation results between TOA and TDOA

B. Position estimation results

We first compare the localization accuracy of TOA and
TDOA with optimal power allocation results. Nb = 8 anchors
are prelocated, while multiple agents are randomly deployed
inside the area.

Second, we compare the TDOA localization results between
optimal and uniform power allocation results. We consider
two different scenarios in this part. One is the multiple-
agent with Nb = 8 prelocated anchors, the other is only one
agent deployed at the center of the area, multiple anchors are
uniformly distributed within the area. We can see the following
phenomenons from the results.

• In Fig. 2, localization accuracy in asynchronous TOA
(essentially TDOA) decreases obviously compared to
synchronous TOA. The main reason for the degradation
is due to the lack of clock offset information.

• In Fig. 3, the CRLB of position estimation decreases in
both strategies with increasing the number of anchors.
Furthermore, the results of optimal strategy decreases
faster than the uniform strategy. The reason is that,
according to the conclusions drawn in [17], [18], the
optimal power allocation vector is sparse. Therefore,
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Fig. 3. Position estimation results between optimal and uniform power
allocation strategies - single agent
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Fig. 4. Position estimation results between optimal and uniform power
allocation strategies - multiple agents

only a small number of “best” anchors are essentially
active during localization. However, power resources are
uniformly allocated into each anchor in the uniform
strategy, which makes this solution not as power efficient
as the optimal one.

• In Fig. 4, the CRLB of position estimation increases
almost linearly in both power allocation strategies. It
agrees to the intuition that when more agents are involved
inside the network, a larger total localization error will be
achieved due to the fixed total power constraint (wtotal).
Similar conclusions are drawn in [15] and [17], etc.
However, the mean error of each agent stays at the same
level due to the broadcast strategy of anchors, which is
different from cooperative localization scenario. It can
also be inferred that, optimal power allocation will benefit
the localization accuracy.
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Fig. 5. Clock offset estimation results between optimal and uniform power
allocation strategies - multiple agents
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Fig. 6. Optimal tradeoffs between localization and synchronization

C. Synchronization accuracy and tradeoffs between localiza-
tion and synchronization

In Fig. 5, we show the clock offset estimation errors with
respect to the agent number. Similar to the position errors, the
synchronization error also increases linearly with respect to
the agent number, which can also be explained through the
fixed power constraint aspect.

We then investigate the tradeoff between localization and
synchronization accuracy from P3a and P3b. Several remarks
can be drawn from the numeric results in Fig. 6.

• There exists a dynamic tradeoff range between the lo-
calization and synchronization accuracy. Position estima-
tion and synchronization are competing for the limited
resources within this dynamic range. We can achieve a
better localization accuracy by sacrificing the synchro-
nization performance, and vice versa.

• It is clear that, if the accuracy threshold is set beyond the
ability to be achieved, problem P3a and P3b become in-
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Fig. 7. Correlation between different power vectors

feasible. According to Fig. 6, if we want an unreasonable
synchronization accuracy (σ2

d0
< 5.92×10−4), the CRLB

of position estimation will become extremely large, which
is impractical.

• On the other hand, if we relax one constraint (e.g.,
synchronization) enough, we can achieve the best result
on the other one. It implies that, if we do not pay attention
to one rating, the other one could achieve the optimal
result, which agrees to our intuition well.

Fig. 6 shows that, we can not achieve both performance
limits in localization and synchronization simultaneously.

D. Discussions of optimal power results

We study the similarity between w⋆
L and w⋆

S in this part.
The correlation coefficient ρ is applied here, which is defined
as

ρ(w1,w2) =
w1 ·w2

||w1|| · ||w2||
(30)

In Fig. 7, we first compare the correlation between w⋆
L

and uniform power allocation results wuni. It can be seen
that ρ(w⋆

L,wuni) decreases with the increasing number of
anchors, that is also due to the sparsity of optimal power
vector. We can also see that, despite a slow reduction of the
correlation between w⋆

L and w⋆
S , ρ(w⋆

L,w
⋆
S) is relative large

(greater than 0.85 in all investigated cases). It implies the
power distributions for synchronization and localization are
similar, but not the same.

VI. CONCLUSION

In this paper, we have investigated the power optimiza-
tion problems in asynchronous localization networks. We
first gave the fundamental limits of position estimation and
synchronization in terms of CRLBs, respectively. We then
proved the power allocation problems are all convex with
respect to the objective functions. Numeric results are then
achieved and compared to the sub-optimal solutions such as
uniform power allocation strategy. We can conclude that, (i)



asynchronous TOA localization is equivalent to TDOA in
sense of FIM and CRLB, (ii) the performance advantage of
optimal power allocation is higher when the anchor number is
large, (iii) optimal power allocation results for localization and
synchronization are quite similar, but not the same. The mean-
ingful results highlight the fundamental performance analysis
of asynchronous localization networks, and are useful for
heuristic localization and synchronization algorithms design
and development.
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APPENDIX: PROOF OF PROPOSITION 3

According to the definition of CRLB, we have

PL(p) = PL(x) + PL(y)

= E{||x̂− x||2}+ E{||ŷ − y||2} (31)

Therefore, if PL(x) and PL(y) are convex in w, the proof is
thus complete.

Similar to the EFIM of clock offset estimation in (14), we
can also derive the EFIM for x̂ and ŷ respectively. Without loss
of generality, we take JL(x) for example here, while JL(y) can
be obtained accordingly.

We first rewrite JJ(p, d0) in (6) as

JJ(p, d0) =

[
L HT

H S

]
(32)

where

L =

Nb∑
j=1

λjcos2ϕj

H = [

Nb∑
j=1

λjcosϕjsinϕj

Nb∑
j=1

λjcosϕj ]
T

=

Nb∑
j=1

λjcosϕjhj

S =

[ ∑Nb

j=1 λjsin2ϕj

∑Nb

j=1 λjsinϕj∑Nb

j=1 λjsinϕj

∑Nb

j=1 λj

]

=

Nb∑
j=1

λjhjh
T
j

where hj = [sinϕj 1]T. We can thus get the EFIM of x as

JL(x) = L−HTS−1H

=

Nb∑
j=1

λjcos2ϕj−

Nb∑
j=1

λjcosϕjh
T
j

( Nb∑
j=1

λjhjh
T
j

)−1
Nb∑
j=1

λjcosϕjhj (33)

Then we have

PL(x) = tr{JL(x)
−1} =

1

JL(x)
(34)

where PL(x) can be proved convex in w by proposition 2.
Similarly, PL(y) can be also proved convex in w. Therefore,

PL(p) is convex in w. The proof is thus complete.
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