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Abstract—Wireless networks transmit information from
a source to a destination via multiple hops in order to save energy
and, thus, increase the lifetime of battery-operated nodes. The en-
ergy savings can be especially significant in cooperative transmis-
sion schemes, where several nodes cooperate during one hop to for-
ward the information to the next node along a route to the desti-
nation. Finding the best multi-hop transmission policy in such a
network which determines nodes that are involved in each hop, is
a very important problem, but also a very difficult one especially
when the physical wireless channel behavior is to be accounted for
and exploited. We model the above optimization problem for ran-
domly fading channels as a decentralized control problem – the
channel observations available at each node define the informa-
tion structure, while the control policy is defined by the power and
phase of the signal transmitted by each node.

In particular, we consider the problem of computing an en-
ergy-optimal cooperative transmission scheme in a wireless
network for two different channel fading models: (i) slow fading
channels, where the channel gains of the links remain the same
for a large number of transmissions, and (ii) fast fading channels,
where the channel gains of the links change quickly from one
transmission to another. For slow fading, we consider a factored
class of policies (corresponding to local cooperation between
nodes), and show that the computation of an optimal policy in this
class is equivalent to a shortest path computation on an induced
graph, whose edge costs can be computed in a decentralized
manner using only locally available channel state information
(CSI). For fast fading, both CSI acquisition and data transmission
consume energy. Hence, we need to jointly optimize over both
these; we cast this optimization problem as a large stochastic
optimization problem. We then jointly optimize over a set of
CSI functions of the local channel states, and a corresponding
factored class of control policies corresponding to local coopera-
tion between nodes with a local outage constraint. The resulting
optimal scheme in this class can again be computed efficiently
in a decentralized manner. We demonstrate significant energy
savings for both slow and fast fading channels through numerical
simulations of randomly distributed networks.

Index Terms—Ad hoc networks, channel state information (CSI),
multiple input multiple output (MIMO) systems.
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I. INTRODUCTION

W IRELESS communication channels have the character-
istic that their amplitude and phase vary with time, i.e.,

the channel undergoes fading, which makes communication
over links with low instantaneous channel gains infeasible. One
way to overcome fading is to use diversity, i.e., take advantage
of multiple signal paths distributed either in space or time
(which fade independently) from the transmitter to the receiver.
In this paper, we focus on communication techniques based
on spatial diversity that exploit, in a distributed manner, the
spatial separation between nodes in a wireless network. This
is feasible because when the nodes are sufficiently apart, the
links between them are likely to fade independently of each
other [1, Ch. 13]. In cooperative communication networks, this
is taken one step further by making the nodes cooperate with
each other in transmitting each other’s information [2]–[4]. It
is a paradigm that promises significant gains in overall network
throughput and network energy efficiency. In effect, coopera-
tive communication achieves the proven gains of multiple input
multiple output (MIMO) systems [1, Ch. 20], which require
nodes that can transmit and/or receive with multiple antennas,
using simpler, spatially separated single-antenna capable nodes.
For a tutorial overview of cooperative communication, we refer
the reader to [5] and [6], and the references therein. Many of
the recently studied aspects include obtaining capacity scaling
laws for random networks using cooperative communication
[7], [8], designing protocols and codes for simple relay network
topologies [4], design of practically implementable schemes
where two mobile phones can cooperate [3], accounting for the
overhead power consumption entailed in distributing the CSI
required for cooperation [9], and the impact of available CSI
on relay cooperation [10].

In this paper, we consider the problem of sending information
packets from a source node to a destination node using a network
of cooperating wireless relays to minimize the total energy con-
sumption. While simple two-hop or three-hop relay topologies
have received a lot of attention recently [9], [11]–[15], ad hoc
networks often have tens or hundreds of nodes in practice. We
therefore consider cooperative communications in wireless net-
works with arbitrary topologies. In our set up, we take the nodes
to be of the decode-and-forward type [4], where a node which
acts as a relay attempts to decode an entire message that it re-
ceives, and forwards it to the next node only if it can decode
the message successfully. Furthermore, we assume that they are
powered by batteries. Therefore, energy efficiency is of critical
importance [16].
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A key and difficult problem in such networks with many
nodes is finding an energy optimal cooperative transmission
policy that guarantees delivery of information to the destination
with a certain reliability (outage). In traditional, non-coopera-
tive routing, the information is transmitted from the source via
a sequence of relay links to a destination, where only two relay
nodes communication on each relay link; many interesting
results exist for this scenario, for example [17], [18], and [19].
When the data transmissions on different hops do not interfere
with each other, the problem of finding a minimum energy
route is equivalent to that of finding a minimum cost path
on a graph where the cost for each edge corresponds to the
average energy consumption in forwarding a message along
the corresponding wireless link. The minimum cost path can be
computed easily using the distributed Bellman-Ford algorithm
[20]. In cooperative routing, on the other hand, multiple relays
can now cooperate at the symbol-level and together forward the
message in each hop. This immensely complicates the problem
of finding the energy optimal cooperative transmission policy
[21]. For example, each transmission in a cooperative route can
be a broadcast, or a cooperative transmission from multiple
relays to a given relay. In fact, this problem is computationally
intractable in that it can be shown to be an NP-hard problem
[22].

The extent of collaboration between nodes in a route depends
critically on the channel state information (CSI) that is avail-
able at the relay nodes. Hence, the CSI acquisition processes and
their energy efficiencies must be considered when selecting the
optimal route [9]. For example, if the transmitting nodes know
the channel gains on their outgoing links, they can adjust their
transmission power as a function of this CSI. Hence, the avail-
ability of CSI increases the choice of the cooperative transmis-
sion schemes. We explicitly model the energy cost of acquiring
CSI, and optimize among the various choices of cooperation and
CSI acquisition that they require.

Another related aspect that has received relatively little
attention is the need to distinguish between slow fading and fast
fading channels when building energy-efficient routes. Slow
fading channels do not change for a long time, and an optimum
collaborative route stays optimum for many messages. Thus,
the relative cost for obtaining and communicating CSI per unit
time is negligible. Fast fading channels, on the other hand,
change from one transmission to another. This can be due to
fast moving objects in the environment or due to the movement
of the nodes themselves. Thus, the CSI at the transmitter node
has to be refreshed often. The significant cost for this process
must be factored into the total cost calculation. Moreover, since
the channel states change quickly, obtaining global CSI about
many nodes in the network in a time-bound manner is practi-
cally difficult. Therefore, nodes and, consequently, cooperative
transmission routes should use instantaneous CSI of only local
links.

For a wireless network with slow fading, the problem of com-
puting an optimal cooperative route (with broadcasts and beam-
forming) was first considered in [21] and shown to be NP-hard in
[22]. Both these papers also suggested heuristics for computing
a collaborative route and implicitly assumed slow fading. These
heuristics do not extend to the fast fading scenario due to the dif-

ficulties described above. Cooperative routing in a network with
fast fading channels using a limited class of routing schemes
over a specific network topology was considered in [23]. How-
ever, the cost of acquiring CSI at the transmitting nodes was not
factored in, and the heuristics developed were not decentralized.

In this paper, we consider large networks with cooperative
routing that exploit broadcasts and distributed beamforming. We
model the problem of computing the energy optimal path as a
stochastic network optimization problem. The goal of the opti-
mization problem is to jointly optimize over (i) the information
structure, i.e., the CSI available at each node, and (ii) the trans-
mission policy, i.e., the transmission power and phase of the
signal transmitted by each node as a function of the available
CSI. Thus, in effect, we model the system as a feedback control
system for which we would like to compute an optimal scheme,
i.e., both the information structure and the transmission policy,
that minimizes the average energy consumption in the network.
In this setting, we make the following novel contributions:

A. Slow Fading Channels

We propose a sequence of optimization problems to compute
a minimal-energy cooperative route in different sub-classes of
all cooperative transmission scheme. These inherently contain
traditional point-to-point routes. We show how to solve these
optimization problems in a decentralized manner, with different
problems in the sequence requiring different degrees of decen-
tralization. The solutions to this sequence of problems do con-
verge to the optimal (but NP-hard to compute) solution. Our
approach thus provides a systematic way to trade-off computa-
tional complexity and decentralization with energy-efficiency.

B. Fast Fading Channels

For fast fading channels, we formulate the problem of com-
puting a route as a decentralized control problem described by
a Markov decision process (MDP). We consider a class of co-
operative routing schemes and explicit mechanisms (and their
costs) to acquire the required local CSI. We compute, in a scal-
able and distributed manner, an optimal cooperative scheme in
a sub-class of cooperative schemes where local nodes form co-
operative relay sub-networks, and data is routed from one co-
operative relay subset to another. We do not consider coop-
eration between different relay subsets due to the high energy
cost and complicated coordination mechanisms required to ac-
quire CSI. The resulting scheme adapts the cooperative route at
the time-scale of changes in shadowing, while the cooperation
scheme within a relay sub-network adapts to the instantaneous
channel states. We note that while we consider only a sub-class
of information structures and policies, our problem formulation
is generic enough to allow for the investigation of other infor-
mation structures and transmission policies as well.

The remainder of the paper is organized as follows: Section II
describes the system model and the physical constraints. Sec-
tions III and IV consider the cooperative routing problem for
slow fading and fast fading channel models, respectively. Sec-
tion V presents our conclusions and discusses future research
directions.
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II. PROBLEM FORMULATION

A. System Model

We consider a network with a set of nodes, , that commu-
nicate with each other using wireless links. Time is divided into
frames of length less than or equal to the coherence time of wire-
less links in the network, which is the time for which the channel
gain on the links remain constant (see, for example, [1]). Frame
level synchronization is assumed between the transmitters; anal-
ysis to take into account the effect of imperfect synchroniza-
tion or the overhead that synchronization entails is beyond the
scope of this paper. Each frame is split into a time of symbol
durations for data transmission, and a time of symbol du-
rations for exchange of network control packets (including ac-
quisition and distribution of CSI). The channel between nodes

and during frame1 has an exponentially distributed power
gain , with a mean , which need not be the same for
all links. Thus, if at time , node transmits a message at power

, the message is received at node with power .
To model the gain, we assume the standard Rayleigh fading
model, where the received complex baseband signal has real and
imaginary parts that are Gaussian distributed and independent.
The Rayleigh model physically arises when the received signal
consists of a large number of multipaths whose attenuation and
phase are independent of each other [1]. Also, the channel gains
are assumed to be independent ergodic stochastic processes.2

We denote the corresponding matrix in by . The
sequence of random variables, , has some
arbitrary higher order statistics. The channels are assumed to be
reciprocal, i.e., , which is often the case, for ex-
ample, in time division duplex systems [1]. Also, for computa-
tions we assume the standard path loss model in which the mean
channel gain, , between nodes and , is inversely propor-
tional to a power of the distance between the two nodes. Note,
however, that the methods in this paper apply for any arbitrary
path loss model. In general, the mean channel gains can change
slowly due to shadowing – the computations in this paper will
need to be repeated at this slow time-scale. A more detailed
treatment on the standard channel model used in this paper can
be found in [1].

For the computation of the transmission power required on
a specific link, we make the following assumptions. All trans-
missions in the network occur at an instantaneous data rate of

bits/s/Hz using a bandwidth Hz. The bandwidth is suf-
ficient so that the transmissions do not interfere significantly
with each other; the power spectral spectral density of inter-
ference plus noise equals . A message is transmitted within
one frame, so that no coding across frames occurs. A received
signal can be successfully decoded at a receiver if its power ex-
ceeds a power threshold, . For purposes of illustration, we use
the Shannon capacity formula to determine the following rela-
tionship between the threshold and : ; this
implies the use of strong codes and a large number of bits in a
single frame [1]. Similar threshold formulas exist for MFSK and

1We will use frame � and time � interchangeably.
2Our analysis can be extended to other ergodic channel fading models such as

Rician and Nakagami-m fading [1]. However, this would also involve redoing
the analysis in [9] for these channel models for use in Section IV on fast fading
in this paper.

MQAM modulation constellations with or without error correc-
tion coding [24]. The methods in this paper do not depend on the
specific form of the (monotonic increasing) function that maps

to .
We model the wireless network as an undirected graph

, where is the set of links. A link between nodes
and exists if is greater than a small pre-defined

threshold.3

A node can only decode transmissions from its neighboring
nodes. Let denote the set of -hop neighbors of , i.e.,
there exists a path of at most hops from node to every node in

in the graph . The class of transmission policies,
denoted by , is such that every policy is a sequence of trans-
missions, where each transmission is of one of the following two
types. Note that the same class was considered in [21], [22], but
for slow fading channels only.

1) Broadcast: Wireless environments inherently have the
broadcast advantage, i.e., using a single transmission, a node
can forward a message to multiple nodes, thus saving power.
In particular, a message is transmitted from a single node
with power . More than one of its neighbors (in the set

) may be able to decode the message. As mentioned,
a node can successfully decode the message if

. Direct (point-to-point) transmission, in
which the transmission power is such that at most one node de-
codes the packet, is a special case. Thus, to forward a message
from node to a set of nodes , the minimum broadcasting
energy needed is , while forwarding the
message one at a time consumes energy .

2) Cooperative Beamforming: If multiple neighboring nodes
of a node, , have a message which needs to be forwarded to
node , they can phase-align and scale their transmit signals
so that they are all received coherently by . In particular, at
time , the amplitude of signal received by from a node is

. Node can decode a message transmitted co-
herently by a subset of its neighbors if and only if the total

received power, exceeds , Sub-
ject to this threshold constraint, the total transmit power con-
sumption is minimized when [21]

For this scheme to work, each node in must know the channel
gain and phase of its wireless link to node , and also the link
gain sum . For more physical layer details of this
scheme, we refer the reader to [9] and [25], and references
therein.

In this paper, we assume that a node does not store observa-
tions from previous times to decode a message. Doing so can
further improve performance [26]. Neither do we consider gen-
eral multi-node to multi-node cooperative transmissions which

3Note that, in general, we can consider a very low threshold, which would
correspond to fully connected network scenario in which the transmission by
a node in the network is heard by all the other nodes. Doing so increases the
complexity of finding an optimal route and yields only a marginal performance
improvement since the weak links will almost never be used for data transmis-
sions.
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require significantly more complicated symbol-level synchro-
nization. We note that preliminary mechanisms for ensuring
synchronization among simple distributed nodes for coopera-
tive beamforming were proposed in [27], which showed energy
savings even with imperfect synchronization. Unlike the beam-
forming case, multi-node to multi-node cooperation makes it
necessary for nodes to synchronize to multiple relays simulta-
neously.

The transmission of messages between different source desti-
nation pairs can be optimized separately because the bandwidth
is assumed to be high enough to mitigate interference. Hence,
in the rest of the paper, we will aim to minimize the average
energy consumed in the network to transmit a single message
from a source, , to a destination, , via intermediate coopera-
tive relays, subject to the following constraint: The end-to-end
outage probability, i.e., the probability that the destination is
not able decode the packet, should not exceed after a fi-
nite (fixed, but arbitrarily large) number of transmissions. Note
that, as we will see, even under the assumption of interference
mitigation, the problem of computing an energy optimal coop-
erative routing scheme is hard.

B. Dynamics

Let denote the set of nodes which have decoded the
message until time . The dynamics of the set are given
by

(1)
Here, , as no relay has decoded the message at time
0. The set denotes the set of receivers that can possibly
decode at time . For a broadcast, is the set of neighbors of
the broadcasting node; and for beamforming, is the node its
neighbors beamform to coherently. Hence, a node not in
is included in if it successfully decodes the message
transmitted by one or more of its neighbors.

III. SLOW FADING

A. Problem and Computational Complexity

In the case of slow fading, the channel states do not change
for a long time. Consequently, the cooperative routing problem,
given the channel states, is a stochastic network control problem
where the underlying dynamics are deterministic. Also, this im-
plies that we must set , since “outage” in this case
implies a service interruption for a long time, which is often
unacceptable. In particular, for given channel states and a trans-
mission scheme, the destination either decodes the message
after a finite number of hops with probability one, or else (prac-
tically) never decodes the message.

Thus, to compute the optimal cooperative route, we have the
following optimization problem:

(2)

where the dynamics of are given by (1). We use to denote
the class of data transmission schemes such that for each

and each , the ’s correspond to either a broadcast or
beamforming transmission. Thus, every satisfies one of
the following properties at each :

i) Only one node broadcasts to one or more nodes, i.e.,
or

ii) Multiple neighbors of only one node, say , beamform to
it, i.e., . In
this case, we assume only node attempts to decode the
beamforming transmission, as reflected by the dynamics
in (1).

In the case of slow fading, the energy consumed in obtaining
the desired CSI at any node in the network can be amortized
over a large number of message transmissions, and is negligible.
Hence, we assume that the energy consumed for obtaining CSI
is zero. However, the solution to the problem in (2) requires
centralized computation and, hence, coordination between all
the nodes in the network. Moreover, the complexity of solving
the above optimization problem is prohibitive. In particular, the
problem in (2) was shown to be NP-hard in [22]. For a fully con-
nected network of nodes, an algorithm of complexity
was derived in [21]. The algorithm is equivalent to a shortest
path computation on a graph with virtual nodes that correspond
to the different subsets of . In the algorithm, two virtual
nodes, corresponding to subsets and , are connected by
an edge if the message can be forwarded from to all the
(additional) nodes in using either broadcast from a node in

or beamforming from multiple nodes in to an additional
node in . The link cost for the edge is the energy consumed in
forwarding a message from to using either a broadcast
or a beamforming transmission.

B. Novel Cooperative Routing Policies: Complexity and
Performance Trade-Off

In this section, we formulate a sequence of optimization prob-
lems that allows us to trade off complexity with performance.
Moreover, performance can be traded off with the degree of de-
centralization as well, with better solutions requiring more CSI
knowledge at each node.

The basic idea is the following. We consider a class of routing
policies, where each policy is a sequence of sub-policies. Each
sub-policy belongs to a policy sub-class which allows coopera-
tion between nodes that are at most hops from each other on
graph . The optimal sub-policy from this sub-class is chosen
to forward a message from node to node (where ).
And, the optimal sequence of sub-policies is then computed for
data transfer from the source to the destination.

In other words, we decompose the optimization problem into
two smaller optimization problems, where the optimization
within a local neighborhood of two nodes less than hops
away from each other involves finding “the best collaborative
transmission policy”, while the optimization over the sequence
of sub-policies involves finding “the best sequence of sub-poli-
cies” that gets a message from the source to the destination.
This approach is computationally much simpler and decentral-
ized, but clearly suboptimal – only in the case where is the
diameter of the network is optimality achieved.
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Note that while we consider the neighborhood of cooperation
to be defined by the number of hops on graph , the methods in
this paper immediately generalize to the case where the neigh-
borhoods are defined by other metrics, for example, the physical
distance between two nodes, the mean channel gain between
nodes, or a specific number of closest neighbors (on graph )
of a node.

We now put this qualitative description into a more formal
framework. We first state the following definitions that will be
required to describe the cooperative routing policies.

We define a directed super-graph that is constructed from
the given graph as follows:

Definition 3.1 (Super-Graph ): Two nodes and in the
directed graph are joined by two directed edges
in opposite directions, if there exists a path of at most hops
from node to node in , i.e., .

Definition 3.2 (Sub-Graph ): For each node, , the
undirected sub-graph of con-
sists of the -hop neighbors of and the edges in that connect
these nodes. Therefore,

We now define a class of sub-policies that get a mes-
sage from node to node such that nodes that are not within

hops of do not transmit, and the message reaches after a
finite number of steps irrespective of which nodes (other than )
decoded the message before.

Definition 3.3 (Policy Sub-Class ): The class
is the set of sub-policies such that for each

sub-policy , (i) , and
(ii) if , then , where the dynamics
of are given in (1).

Among all policies in which nodes not in do not
transmit, the constraint eliminates unneces-
sary transmissions that do not successfully deliver the message
to any node; hence, this constraint does not compromise en-
ergy-efficiency.

Next, we define the energy cost for transmitting a message
between two nodes connected by an edge in the super-graph

. This definition will be useful when we derive distributed
algorithms to compute an optimal sequence of sub-policies.

Definition 3.4 (Edge Cost ): The cost, for
an edge in super-graph is the energy consumed in the
network to transmit a message from node to node using a
minimum energy policy in .

Note that to compute , we only need the CSI on the
links contained in . In particular, it involves solving
the optimization problem in (2) associated with the sub-graph

with the destination node .
Definition 3.5 (Policy Class ): Consider a

path, , from node to node on super-graph
. The sub-class is the set of factored

policies given by the Cartesian product

(3)

Thus, consists of a sequence of transmis-
sion schemes in policy sub-classes s along the path

from node to node on super-graph . Note
that even the set of transmission schemes defined by is
more general than the class of the traditional one-hop routing
schemes because it allows for cooperation between nodes
which are within one hop of each other on graph .

Thus, every policy in consists of a sequence
of sub-policies, where the first sub-policy is in , the
second sub-policy is in , and so on. Thus, is it is a
sequence of cooperative transmission sub-policies to forward a
message from node to node , node to node , and so on.
We now define a policy class that is the union of the factored
policy classes over all the paths in .

Definition 3.6 (Policy Class ): Let be the set of all paths
on . The policy class is defined as

(4)

Thus, the class consists of all sequences of sub-policies
such that each sub-policy belongs to for some .
Thus, it corresponds to cooperative transmission policies that
have as their components smaller cooperative transmission sub-
policies, each of which sends data between nodes and that
are separated by at most hops. Note that such a sub-policy is in

and, hence, can use up to transmissions.
We can interpret as the degree of cooperation allowed between
nodes. Thus when is the diameter of the graph , an optimal
policy in is globally optimal. Also, from the definitions it
follows that for , , and hence, the energy
consumed by an optimal policy in is always less than or
equal to the energy consumed by an optimal policy in .

Remark: Note that the threshold for the mean channel gain
used to define the graph plays a key role in defining the
number of hops between two nodes in . A lower value of
threshold can allow nodes to be connected by an edge in ,
which otherwise would have been connected by an edge only in

for . For example, since in one spectrum use, a mes-
sage can be exchanged only between nodes that are neighbors
in (see Section II-A), the class of routing policies for graph

is smaller than the class of policies for sub-graph (cor-
responding to ) obtained from that is induced by
a lower threshold.

C. Example

Consider a wireless network represented by the graph shown
in Fig. 1(a), in which nodes that are at most distance units
apart are connected by an edge. For simplicity, the channel gain
equals the path loss, which is taken to be proportional to the
inverse fourth power of the distance from the transmitter. We
now construct the super-graph and its corresponding edge
costs for .

The first super-graph equals , by definition. We now
describe the computation of the link costs for links emanating
from node , i.e., using the cost calcu-
lations of Section II-A. Other link costs (shown adjacent to the
corresponding links in Fig. 1(a)) can be computed in a similar
manner. Note that a unit of energy refers to the energy required
to transmit one packet over a distance of 1 m.

Consider the sub-graph , which consists of nodes ,
, , and , and edges , , , and . Then the

sub-class of policies is the set of policies that get a
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Fig. 1. Construction of graph � . (a) Graph � � � with link costs. (b)
Graph ���� �� with link costs.

message from node to node using only nodes , , , and
, for . The optimal policies in these classes and

the corresponding energy consumption can be computed using
the dynamic programming algorithm in [21]. For data transmis-
sion to , it turns out that the optimal policy is for to transmit
directly to , which costs unit energy. Similarly, direct transmis-
sion is optimal to get a message to . For data transmission to

, it turns out that the optimal policy in is one where
first broadcasts to nodes and using unit energy, and then

, , and beamform to ; this consumes a total energy of 1.44
units.

The second super-graph is obtained from by connecting
nodes that are within two hops of each other. Again, we describe
the construction of links costs for links emanating out of node

. The subgraph of is shown in Fig. 1(b). The class of
policies , for , is the set of all policies
in that get the data from node to node . It turns out that
energy optimal policies for node to send a message to nodes ,

, and are the same as those in . Node communicates
with node by first transmitting the message to node , which
then forwards it to node . For communication with node , node

first broadcasts the message to nodes and , after which ,
, and beamform to node . Then, nodes and beamform to

forward the message to .
An optimal point-to-point conventional route on graph

from node to node consumes an energy of 3 units. The
optimal policy in , in which data is forwarded from one node
to another node within 1 hop, is to send data from to (which
involves a broadcast to and , and cooperative beamforming
from , , and to ), followed by a direct transmission from

to . The energy consumption for this policy is 2.44. The
optimal policy in , for the same purpose, consumes an even
lower energy of 2.24 units. For this graph, an optimal policy in

is also globally optimal as all nodes are at most two hops
apart from each other.

D. Distributed Optimization and Complexity

Let be the degree of the super-graph consisting of
nodes. The following result about complexity follows from the
dynamic programming approach of [21].

Lemma 3.7: All the costs, , for
can be computed in time.

Note that this can be significantly lower than the complexity
of of computing a globally optimal policy using the
dynamic programming algorithm in [21]. Furthermore, only the
CSI over the edges in the sub-graph is needed to com-
pute .

The following result shows that the computation of an optimal
policy, in , can be done in a distributed manner. Specif-
ically, we show that given ’s, the problem is equiva-
lent to solving a shortest path problem on the super-graph ,
which can be done using the distributed Bellman-Ford algorithm
[20]. Let the optimal route from source to destination on the
super-graph be . Let
denote a minimum energy sub-policy in , for

.
Lemma 3.8: The policy defined by the ordered sequence of

sub-policies is a min-
imum energy policy in for data transfer from to . Also,
the energy consumption to forward a message from to using
this policy is given by .

Proof: Consider a path
from to on the super-graph from to , and the
corresponding class of policies . Any
policy, , in this class consists of an ordered sequence
of sub-policies , where

. The sub-policy con-
sumes energy, say , to forward a message from
to . Then the total energy consumption to forward a mes-
sage from to using policy is given

. Using the definitions of
and , we can compute an optimal policy

as follows:

since only depends on , which for-
wards the message from to without making use of pre-
vious transmissions in (see Def. 3.3).
The total energy consumption corresponding to the policy
is given by which
follows from the definition of . Thus, the energy
cost of using to forward a message from to using an op-
timal policy in is equal to the sum of the costs
on the edges in the path in graph . Since, the
set is the union of ’s over all possible paths
from to on the graph , the optimal policy in
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is the minimum energy policy in , where
is the shortest path in graph . The

result then follows.
The following result then follows from Lemmas 3.7 and 3.8.
Theorem 3.9: The complexity of computing an optimal

policy in the class , using dynamic programming for
computing costs and the distributed Bellman-Ford algo-
rithm for solving the shortest path problem on , scales as

.
We now summarize the main steps for computing an optimal

policy in for data communication between nodes and .
1) Construct the super graph , in which two nodes are con-

nected by an edge if they are separated by at most hops
in the original graph .

2) For each node in the node set ,
a) Construct the sub-graph

, which consists of the node
and the nodes which are within hops of , and the

edges between these nodes in the graph .
b) For all nodes , compute the optimal policy

in the class using dynamic programming, and
the corresponding minimum cost, to forward
a message from to .

3) Compute a shortest path on graph between and ,
where cost of edge is given by , using the
distributed Bellman-Ford algorithm. The sequence of sub-
policies corresponding to this path gives an optimal policy
in .

Remark 1: The computational complexity of computing an
optimal policy in grows quickly with (from Lemma 3.7).
To reduce it, one option is to reduce . Alternately, for a given ,
we can consider a smaller policy sub-class .
The optimal sequence sequence of these sub-policies can then
be computed using the above approach.

Remark 2: For neighbor inclusion in the super-graph based
on the distance or the closest neighbors, we can define
classes of sub-policies, and , respectively, in a
manner identical to . These policy subclasses, in turn,
define the corresponding classes of policies (analogous to )
over which we can optimize (for energy-efficiency) by com-
puting a shortest path for the appropriate induced super-graphs
and their corresponding edge costs.

Remark 3: Our approach provides a way to trade-off compu-
tational complexity with performance. Thus, for a given amount
of computational budget, we can solve the local cooperation
problem for the highest possible , and then route over the in-
duced super-graph.

E. Sequence of Solutions

Consider the graph shown in Fig. 2. The channel gain on
each link is assumed to be constant, and is determined by the
distance between the nodes and the path loss model described
in Section II-A. Since any two nodes in are at most 4 hops
apart, we compute the optimal policy in classes , , , and
the globally optimal for forwarding a message between from
any node to any other node. The energy consumed per message
by optimal policies in different classes, when averaged over all
the 72 possible node-destination pairs in , were as follows: An
optimal policy in consumed an average of 2 units of energy,

Fig. 2. Example: Graph �.

while optimal policies in , , and were identical and con-
sumed an average of 1.722 units of energy. (Recall that a unit
of energy is the energy required to forward a message from one
node to another node at a distance of 1 m.) Thus, increasing the
possibilities for cooperation is quite beneficial, though the gains
saturate eventually.

F. Computational Results for a Random Network

The above examples assumed a specific graph. We now con-
sider optimal policies in different classes for a random network
that consists of 20 nodes and is located within a square of length
5 units. Each node’s location is random, and is uniformly dis-
tributed over the square’s area. For each instance, nodes within
a distance of 1.7 units were taken to be connected by an edge in

.
We limit our attention to . The computation of an op-

timal sub-policy in some sub-classes ’s becomes pro-
hibitive, and thus makes the computation of an optimal policy
in difficult. Hence, as discussed in Section III-D, we consider
the following subclasses of of for transmitting
a message from to , where .

1) No Cooperation (NC) Policy: This corresponds to tradi-
tional point-to-point routing policies, with no cooperation be-
tween nodes. The optimal policy in this class is given by a
shortest path computation on graph , which can be done in
a distributed manner using the Bellman-Ford algorithm.

2) : This class, corresponding to was defined in
Section III-B.

3) Broadcast-Cooperate Policies (BC): This class consists
of the following type of transmissions from node to node for

. Node broadcasts a message to some or all of its
neighbors. The nodes in the set of neighbors common to and
, given by , that successfully decode the

message then cooperatively beamform to forward the message
to node . Policies in this class route data from one relay subset
to another via single nodes. The complexity of computing of an
optimal policy in this class can be shown to scale as
for any graph with nodes.

4) : This is the class of policies given by the union
of the policies in and the class BC.

The energy cost of sending a message from a node to a
node need not be the same as that from to even though the
links are reciprocal. This is because of the inherent asymmetry
in the energy cost of broadcast and beamforming transmissions.
The network thus consists of 380 ordered source-destination
pairs. To get a complete picture of the energy savings possible
anywhere in the network, we compare the statistics of the av-
erage energy consumed to send a message between different
source-destination pairs. The cumulative distribution function
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Fig. 3. CDF of energy per message for optimal policies in NC, � , BC, (� �

��) for a 20-node random network.

TABLE I
AVERAGE ENERGY PER MESSAGE FOR OPTIMAL POLICIES IN

NC, � , BC, AND (� � ��) FOR A 20-NODE NETWORK

(CDF), which gives an idea of the entire probability distribution,
of the energy consumed for different source-destination pairs
is plotted in Fig. 3 for the four different classes. And, the en-
ergy consumption (averaged over all source-destination pairs)
is shown in Table I.

We see that the optimal point-to-point routing policies per-
form poorly compared to even simple cooperative policies,
namely, optimal policies in classes and BC. An interesting
observation is that optimal BC policies, which only consist of
two transmissions to forward a message from to that are
within 2 hops of each other, perform almost as well as the
more complex policies in , which, in addition, allows
arbitrary cooperation in forwarding a message from to on
sub-graph . This observation will motivate the class of
policies that we will consider for fast fading channels in the
next section.

The heuristics proposed in [21], [22] take advantage of coop-
erative diversity to forward a message from a source to destina-
tion. Unlike our approach, these heuristics do not take advan-
tage of broadcasts after the first transmission. While finding the
performance bounds for an optimal policy in for any less
than the diameter of the graph remains an open problem, the
following simple example illustrates how exploiting broadcasts
in intermediate steps can help improve the energy-efficiency of
the overall route.

Consider five nodes whose coordinates are shown in Fig. 4(a),
and a graph induced as shown in Fig. 4(b). Then the two
heuristics in [21] and the heuristic in [22] all yield the following
policy: (1) broadcasts to , (2) and beamform to (or ), (3)

, and ( ) beamform to . Instead, the optimal policy in
for the graph consists of the following steps: (1) broadcasts
to , (2) broadcasts to and , and (3) and beamform to .
Thus, the optimal policy utilizes a broadcast as an intermediate

Fig. 4. Example: Broadcast advantage. (a) Node locations. (b) Induced graph
�.

step, which is not allowed by the heuristics in [21], [22]. The
first policy consumes 7.8% more energy than the optimal policy
in .

G. Improving Energy-Efficiency Further Using Node Reuse

We now describe a refinement of the optimal policy in class
that can only reduce the total energy consumed to send a

message from the source to the destination. Specifically, for a
policy composed of a sequence of sub-policies, we allow a sub-
policy to exploit the nodes that decoded the message during the
execution of earlier sub-policies in the sequence.

The following theorem provides the motivation for the ap-
proach. It shows that if node precedes node in the min-
imum energy path in the super-graph , then node success-
fully decodes a message only after has decoded it. The result
is obvious for point-to-point routing policies.

Theorem 3.10: Let the minimum cost path on the graph, ,
between the source, , and the destination , consist of the or-
dered sequence of nodes, say . If , then
successfully decodes the message only after :

(5)

Proof: See Appendix A.
Consider a transmission policy that forwards a message along

a path in . Recall that the message is for-
warded from to using a minimum energy sub-policy in

. In general, such a sub-policy can forward the mes-
sage to intermediate nodes, say in the set , before
the message is decoded by . Therefore, the nodes that already
have successfully decoded the data can be additionally used in
cooperatively forwarding the message from to and save
energy. Formally, these nodes belong to the set

, where

is the set of common neighbors of and
in the super-graph .

We now illustrate the above refinement by revisiting the ex-
ample of Section III-C. As we saw, the optimal policy in the
class for sending data from node to node consists of three
steps. First node broadcasts a message to nodes and . Then
nodes , , and beamform to transmit the message to node .
Finally, node forwards the message to node . This coopera-
tive policy is illustrated in Fig. 5. Using the node reuse refine-
ment, node , which is a neighbor of node and has successfully
decoded the message when it was transmitted from to , can
simultaneously beamform with node to forward the message
to node , as shown in Fig. 5. Doing so reduces the total energy
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Fig. 5. Refinement of optimal solution in � .

consumption on the second hop from 1 to 0.8. In fact, the refined
policy in is actually the optimal policy in .

IV. FAST FADING

We now consider the case where the channel states vary with
time. In particular, we assume a block fading model where the
channel state on a given link during frame is independent of
the channel state on any link at other times . Given that
the channel states change from one frame to another, outage
no longer occurs in long bursts with a high probability. Hence,
one can allow for an average end-to-end outage of . This
is a reasonable system model for best effort service, or for the
case where the higher layers of the protocol stack can tolerate a
certain packet loss probability.

Moreover, as we argue in Section I, at any time , nodes
should only obtain CSI of local links to decide the transmission
policy at time . In particular, in this section, we focus on CSI
acquisition schemes that enable a node to obtain CSI that is a
function of the channel gains on the links in that
are incident either on the node on its neighbors of the node. This
corresponds to the links contained in . The allowance to
obtain CSI on a link in , versus just , is motivated
by beamforming, in which a transmitting node needs to know
the sum of the channel gains on all the links to the destination.
Generalizing to , while possible, is less practical
because of the limited time available to obtain the CSI over mul-
tiple hops in a fast fading channel.

We first design the CSI acquisition processes to enable broad-
casts and beamforming transmissions. We then model the op-
timal cooperative routing problem for fast fading channels as
a stochastic network control problem. We show that the opti-
mization problem can be written as a dynamic programming
problem that is hard to solve even offline. We therefore consider
a sub-class of the general class of transmission schemes, derive
an optimal scheme in this sub-class, and demonstrate that we can
still get large energy savings. What makes this approach attrac-
tive is that the computation associated with finding this policy
scales well with the network size and can be carried out in a de-
centralized manner with fast convergence. The main ideas used
in this section are similar to those in the previous section for op-
timization in , but more involved due to the fast fading
on each link.

A. CSI Acquisition Processes

We first introduce additional notation. We use 2-neighbor-
hood of a node to refer to the nodes and links in . We
denote by the function which

maps the set of nodes within the 2-neighborhood of that have
decoded the message at time (this is a random process for fast
fading channels) and the instantaneous channel gains on links
in to the CSI available at node . Thus, the CSI avail-
able at node at time is ,
Here, is the maximum node degree of the graph . We
consider the range to be because for broadcast, the broad-
casting node needs to obtain an estimate of the channel gains
on the links to the receivers. For beamforming, each node needs
to know its own channel gain and phase to the receiver, and the
sum of the channel gains over all the links which beamform to
the receiver. The transmission power at a node at time is
thus a function of the CSI available at that time, in particular it
is given by , where

is now a function that maps to .4 We will simplify
notation and denote by

and by
when the underlying mappings are clear from the context. Also,
note that the nodes are assumed to know the mean channel gains
on the links in their 2-neighborhood – these can be updated at
the timescale over which shadowing changes. We neglect the
energy cost of obtaining these mean values because they get
amortized over a large number of transmissions. Finally, we de-
note by the energy consumption
to obtain the CSI at node

at time .5

We now describe the different CSI functions that we con-
sider, and the underlying physical mechanisms to obtain this
CSI. While we only describe one particular choice of a CSI
acquisition process, different such processes are possible, and
would lead to different amounts of energy consumption to ob-
tain the same CSI.

1) CSI for Broadcast: For a node to obtain the CSI on chan-
nels from itself to a subset of its neighbors , the
neighbors in this subset transmit training symbols of 1 symbol
duration time each at a fixed power . is chosen such that
it is sufficiently high for to estimate the channel gain for the
channels to nodes which are intended to receive the broadcast.
Then, if , the CSI at node and time and
the corresponding energy consumption to obtain it are

and no CSI is acquired by nodes other than . We use to
denote the fact that no CSI is received on a particular link.

2) Beamforming CSI: Here, a set of nodes beam-
form to send a message to node . We consider a class of CSI
feedback processes, in which partial CSI of the channels from
nodes in to is obtained by each node in a subset . In
general, may not be the same as because feeding back
the CSI to nodes which have low instantaneous channel gains
to costs a lot of energy. Node then feeds back the following
CSI to every node in : (i) to a node, , the gain
and the corresponding phase, , and (ii) to all nodes, sum

4This corresponds to the term information structure in the decentralized con-
trol literature [28].

5We need appropriate measurability restrictions on � s,� s, and � – the func-
tions we consider in this paper satisfy such technical conditions.
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of channel gains . Each feedback is assumed
to take symbols.

To obtain this CSI, each node in the set transmits a training
signal with power to node , for one symbol time. Node
then estimates the channels gains and phases, and feeds them
back to the nodes in . The sum of the channel gains are fed
back to all the nodes using a single broadcast, i.e., by inverting
the weakest channel with gain . For

, no CSI is available. For , the available CSI
function is given by

The energy expended during time in the training and feedback
process during time described above is given by

Here, is the energy consumed to send training se-
quences to , and is
the energy to feedback the individual channel gains and

is the energy required to
feedback the sum of channel gains using a single broadcast.

B. Stochastic Networked Control

We now formulate the problem of computing an optimal
transmission scheme for fast fading channels formally in a
stochastic networked control setting.

We consider the optimization of both the available CSI given
by the functions s, and the control policy which defines the
functions s. The goal is again to minimize the average energy
consumption for both CSI acquisition and data transmission to
send a message from the source to the destination, subject to an
end-to-end outage constraint. Thus, this optimization problem is
a stochastic control problem, where we design the information
structure (available CSI) as well as the control policy.

The optimization problem can be stated as

(6)

where the dynamics of the set are given by (1). The sets
and are similar to the definition of in Section III, i.e.,

they correspond to a sequence of broadcasts and beamforming
schemes, where during each frame the CSI for broadcast (or
beamforming) is first acquired, and then data is transmitted
using a broadcast (or beamforming transmission). We would
like to optimize over the functions s and s.

We can write down the above system as a Markov decision
process (MDP) with state and solve the stochastic
optimization problem using dynamic programming. However,
the cost is again prohibitive, as itself belongs to a set of
cardinality . Even when we fix s, the problem is at least
as complex as that in the slow fading case. We now describe a

set of local cooperation schemes similar in spirit to the schemes
in the sub-policy class , but more restrictive.

C. Local Cooperative Communication Schemes

Specifically, we consider direct transmission between two
nodes, and a scheme where a broadcast from a node to
multiple relays is followed by a beamforming from the relays
to a node . Again, we optimize over each such class of local
cooperation schemes. This is a smaller set of schemes than
those in . For example we do not allow a sequence
of two beamforming transmissions, even if the beamforming
during each transmission is between nodes which are neighbors
of the destination of that beamforming. Still, the analysis of the
local cooperation schemes for fast fading is more involved than
that for in slow fading. However, we note that the
techniques in this section of the paper can be used to design
more complex schemes for fast fading.

We describe direct transmission and relay cooperation
schemes (broadcast followed by beamforming) and show how
to compute the optimal strategy for each of these kinds of
schemes. Each local transmission is subject to an outage proba-
bility constraint which mandates that the data should reach the
intended node with a probability of at least . In particular,
we focus on the transmission of a message from node to node
, over one frame (direct transmission) or over two frames

and when common neighbors are used as relays.
1) Direct Transmission With CSI: If , for direct

transmission, node first obtains the CSI, , using the CSI
acquisition process for broadcasts. Node then forwards the data
message with a transmit power that depends on so that
the received power at node exactly equals the power threshold

with a probability of . Mathematically, the transmit power
of node is , where denotes
the indicator function. Given the outage constraint, must
be set such that exceeds it with probability .
Therefore, using the fact that is an exponential random
variable, . The total average energy
consumed by this scheme (including the cost of acquiring CSI)
to forward a message from to is given by

(7)

where is the standard exponential
integral [29].

Note that as long as we can track the channel well by sending
training sequences for a small duration compared to the frame
duration, acquiring CSI is always beneficial. In this case, even
though the training sequence is sent with a fixed power, ,
which needs to account for bad channel states over which data
may be sent, it saves energy because the data transmission power
(over a longer time ) can be adapted to the channel state.

2) Optimized Broadcast With CSI & Cooperation: We first
describe a parameterized set of schemes, in which node uses
a two-hop transmission to forward a message to node , using a
combination of broadcast from to intermediate relays at time

and beamforming by the relays to at time . Clearly,
, and the relays must be common neighbors of and

, i.e., they belong to the set . The
optimized broadcast with CSI and cooperate scheme can then
be computed easily, as describe below.
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Node obtains the CSI about the links to its neighbors (in
the set ), and then broadcasts data, which its neigh-
boring nodes (including if ) try to decode, incur-
ring an energy cost of . Node then broadcasts
the message to a subset of relays with the highest instan-
taneous channel gains to with probability , i.e.,

, where is the index of the node in
with the th highest instantaneous channel gain. As

before, is chosen such that . (Also,
, for all .)

When node does not declare outage, let the set of relays
which successfully decoded the data broadcast by be denoted
as . (For all , .)
To beamform to , when node is unable to decode, these re-
lays need to first acquire the required CSI using the CSI acqui-
sition process for beamforming described earlier. In particular,
the node selects a subset, , of relays with the highest
instantaneous channel gains to , and it feeds back to every se-
lected node, , the gain and phase of the channel on the link

along with the sum of the channel gains. Each selected
node, , then cooperatively beamforms to for-
ward the data to with its optimal transmit power given by

(All nodes not in do not transmit.) This ensures that
the data message arrives at node with a total received power
that exactly meets the decodability threshold . The above relay
selection is similar to hybrid selection and maximum ratio com-
bining in systems with multiple transmit and/or receive antennas
[1], and exploits fast fading of the links between the relays and

and .
Any such scheme described above is parameterized by (i)
, the number of relays to which node broadcasts, and (ii)

, which determines the actual set of re-
lays with highest instantaneous channel gains to that beam-
form to .6 The optimal values of these parameters and the av-
erage total energy consumed , (including the cost of ac-
quiring CSI) can be obtained using techniques very similar to
those in [9]. The computations involved are very simple and can
be done in real time using Ei function tables [29]. We provide
a brief overview of the computations in Appendix B. The Ap-
pendix also describes the suitable modifications that are needed
when , in which only one relay forwards a message to .
This is a special case because zero outage costs infinite energy
for Rayleigh fading channels.

D. Distributed Cooperative Routing

We now show how to compute, using a tight approximation
bound, an approximately optimal cooperative route that con-
sists of a sequence of the local cooperative schemes described
above. Limiting the set of transmission schemes to the above
set in which messages are always (in one or two hops) destined

6Note that the number of relays selected for beamforming in [9] is based on
the set of relays which decode the previous transmission; such a simple rule
enables real-time implementation even in very fast fading channels as long as
we can track the channel.

for one node with a local maximum outage, enables the decom-
position of the general intractable cooperative routing problem
into a local physical layer optimization problem, and a global
optimization of the cooperative route. Notably, both these opti-
mizations problems need to be re-solved at the time scale of slow
fading or shadowing, and the total optimization complexity for
a wireless network with nodes turns out to be . At
the same time, both the CSI acquisition and data transmission
still adapt locally to the instantaneous channel states and exploit
the advantages of cooperative communication; the rules for this
adaptation are very simple, and allow a real-time implementa-
tion that can cope with fast fading and benefit from it.

The transmission of messages in each of these schemes can
be optimized separately, as done above, because the interference
power is not assumed to change. Specifically, our aim is to min-
imize the average energy consumed in the network to transmit a
single message from a source, , to a destination, , via interme-
diate cooperative relays subject to a per-hop outage constraint.
For an end-to-end maximum outage probability, , we set

such that . Joint optimization of
and the cooperative route is beyond the scope of the paper.

All local transmissions, as defined in the previous section, can
be associated with an edge on the supergraph . (Recall that

connects any two nodes in that are at most two hops away
from each other.) For each edge in , we can compute an opti-
mized broadcast with CSI and cooperation scheme (along with

) as described in Section IV-C, and the average energy
cost for direct transmission . Hence, we can compute
an optimal local scheme that consumes the minimum energy
including that for CSI acquisition. Note that the computations
involved are simple [9] and the computational complexity de-
pends only on the degree of , which is independent of for
constant density networks.

The total energy consumption to forward a message from
to , conditioned on receiving the message is then given

by . Then the total energy con-
sumed, , to forward a message from the source, ,
to the destination, , using optimized local cooperative data
transmission schemes corresponding to the -hop path

, where , for all
, is given by

(8)

where is the energy per message over
hop . The factor occurs because node
transmits only if it successfully receives and decodes the mes-
sage, which happens with probability .

Computing an optimal path which minimizes the cost in (8)
is a combinatorial problem since the energy consumption on
a given hop depends on the number of hops that precede it.
However, using , we can derive
and minimize the following tight and tractable upper bound on

(9)

The energy consumption on a path that minimizes (9) is guar-
anteed to be within of that of an optimal path that
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minimizes (8). For example, when , the above ap-
proximation factor is at most 1.05.

Thus, computing a global route for which
is within of that of an optimal route consists of
the following main steps: (a) determining the super-graph ,
(b) optimizing the local cooperative transmission schemes to
determine the edge costs for each which
can be done in time if degree of does not grow with

, (c) computing in a distributed manner the shortest path on
with edge costs using the Bellman-Ford algorithm,

which can be done in time.
Note that only the relay selection and the transmit powers and

phases of the transmitting nodes have to be adjusted with the
instantaneous local channel states. The costs, , for the
graph , and, therefore, the optimum route, depend only on
the mean channel gains on the local links. Hence, the optimiza-
tion of the local relay cooperation scheme and the Bellman-Ford
algorithm needs to be executed only once for a given set of mean
channel gains. As the mean channel gains change with time due
to shadowing, the algorithm will have to be re-executed. How-
ever, given that the optimal cooperative route obtained in the
previous iteration would be close to optimal when the under-
lying network changes gradually, the number of iterations re-
quired by the Bellman-Ford algorithm to re-converge to the op-
timal solution would typically be small (see .Fig. 6).

E. Example

We now illustrate the above steps by an example. Consider
the wireless network represented by the graph in Fig. 7. The
channels on all the links are assumed to undergo Rayleigh fading
with an average channel power gain of 1. Nodes that are not
connected by an edge have very weak channels between them.
The threshold, , for successful reception was set such that the
instantaneous channel gains exceeded the threshold with prob-
ability of 0.95. To compute an optimal scheme as described
above, we first form the super-graph , in which an edge ex-
ists between two nodes that are within two hops of each other
in . This is illustrated in Fig. 7. For example, nodes 1 and 6,
which are not connected by an edge in get connected by an
edge in because their common neighbors, nodes 2, 3, and 4,
can possibly act as relays.

The next step consists of the computation of the costs associ-
ated with each of these edges. To do this, each node obtains the
mean channel gains on the links which connect it to the other
nodes in . For example, for the network in Fig. 7, node 1 ob-
tains mean channel gains of links (1, 2), (1, 3), (1, 4), and also
of links (2, 3), (2, 5), (3, 4), (2, 6), (3, 6), (4, 6). This enables
it to compute the minimum energy schemes to forward a mes-
sage to nodes 2, 3, 4, and 6. The cost associated with the using
the optimal local transmission scheme is shown for each of the
edges in in Fig. 7. Then, using Bellman-Ford algorithm, the
minimum cost route from source node 1 to destination node 7
can be computed in a distributed manner. It turns out to consist
of the following two hops: (1, 6), in which optimized broadcast
with CSI and cooperation scheme (with nodes 2, 3, and 4 as re-
lays) is used, and (6, 7), in which direct transmission with CSI
scheme is used. All the steps of the resulting optimal cooperative
transmission scheme – including CSI acquisition – to transmit
a message from node 1 to node 7 are described below.

Fig. 6. Broadcast and cooperative beamforming with CSI acquisition process.
In frame �, relays 1, 2,3, and 4 transmit training sequences to the source, which,
in turn, broadcasts the data to relays 1, 2, and 4. These relays then transmit
training sequences to the destination in frame �����, which feeds back the CSI
to relays 1 and 2; these relays beamform to transmit the data to the destination.

Fig. 7. Left. Wireless network graph,�. Right. Computation of optimal scheme
using super-graph � . The solid edges are those in �, while the dashed edges
are those in � but not in �. Optimal edge costs are shown for each edge.

1) Broadcast With CSI: Nodes 2, 3, and 4 transmit training
sequences to node 1, which then broadcasts the message (with
power control) to the two nodes in {2, 3, 4} to which it has the
best channel gains. It does this with outage . This selection
of 2 best nodes out of three nodes provides a diversity order of 3
[1]. Let us denote these nodes as and , which are a function
of the channel realizations.

2) Relay Selection: Nodes and transmit training se-
quences to node 6, which then feeds back the CSI to the node,
say , with the best channel to node 6. then forwards the mes-
sage to node 6. This selection of the best one node out of two
nodes provides a diversity order of 2.

3) Direct Transmission With CSI: Node 6 then inverts the
channel to node 7 with outage after obtaining the CSI as
described in the previous section.

For direct transmission, since the outage on each hop is at
most 0.05, the total average energy consumption to forward a
message from node 1 to node 7 over the optimal path (1, 3), (3,
6), (6, 7) is given by , while that
for the cooperative scheme computed above is

. Even for such a small network, for transmitting a
message from node 1 to node 7, allowing for local cooperation
along with direct transmissions leads to energy savings of 14%
over just direct transmissions.

F. Computational Results: Performance Improvement

To study the benefits of local cooperation in larger networks,
we simulate a wireless network with 20 nodes. The mean
channel gain on each link between a pair of nodes was chosen
randomly and independently of the other mean gains. Each
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Fig. 8. Left. Energy per message for an edge ��� �� in � when ��� �� � � and when ��� �� �� �. Right. CDFs for energy required to transmit a message from
source to destination when optimized local schemes are used and when only direct transmissions are used.

link had a mean gain of 1 with probability 1/3, and a mean
gain of 0.1 with a probability 2/3. Two nodes were connected
by an edge in the graph if the mean gain of the channel
between them was 0.8. While this is a simplified abstraction
of a wireless network, it will prove sufficient to compare the
various transmission schemes. It models a scenario in which
the channel between two nodes can either be good (mean
gain of 1) or bad (mean gain of 0.1). (We emphasize that the
theory developed in Sections III and IV can be applied to more
detailed channel models with pathloss and shadowing as well.)
The channel fading and the threshold are as in Section IV-E.
Unlike the example in Section IV-E, the maximum end-to-end
outage probability is set as , which implies that the
link outage probability is now .
We set the time to feedback CSI from one node to another as

symbol times, and the time for transmission of one data
message as symbol times.

We first study the energy savings obtained by local coopera-
tion on a per hop basis in . We then consider an end-to-end
optimized cooperative route.

1) Energy Savings on One Hop in : Consider an edge
, i.e., two nodes and at most two hops away from

each other in . When , i.e., there exists a direct wire-
less link from to , the average energy consumption to forward
a message from node to node using a direct transmission with
CSI is 0.25, while when , the value corresponding to
two such direct transmissions (from to a neighbor, and from
the neighbor to ) is 0.5. These and the corresponding values
when a varying number of common neighbors are present and
used as relays are shown in Fig. 8. When , the en-
ergy consumption of local cooperation scheme, which consists
of two hops and only one common relay node, can exceed 0.5.
This is because in the broadcast with CSI and cooperate scheme,
the outage requirements for sending a message from node to
the single common relay and then from the relay to node are
tighter so as to ensure that the total outage probability of the
scheme is 0.002. In this case, the routing algorithm will choose
the direct transmission scheme instead of cooperation using one
relay for that edge.

As the number of relays used for local cooperation increases,
the average energy per message first decreases and then in-
creases. The reason for the increase is that, with a large number
of relays, the marginal diversity gain for an additional relay is
too small to offset the additional energy required to acquire the

CSI for it. While the above local optimization is for the case in
which all source to relay links and relay to destination links are
independent and identically distributed (i.i.d.), the general case
of non-i.i.d. links can also be handled [9].

2) End-to-End Energy Savings: We now compute the av-
erage end-to-end energy consumed to forward a message from a
source to destination for all the 380 source-destination pairs that
can occur in a network of 20 nodes, when (i) only direct trans-
missions are used between neighbors in , and when (ii) an opti-
mized sequence of local transmission schemes computed based
on the methods in the previous two sections, is used. We then
plot the cumulative distribution function (CDF) of the energy
consumed for all the different source-destination pairs in Fig. 8.
The average energy consumption (over all source destination
pairs) when the route uses only direct transmissions is 42.0% to
44.4% higher than when the route uses the optimized sequence
of local transmission schemes.7 Thus, the right amount of local
cooperation over each hop , where the number of
relays a node broadcasts to and the number of relays that se-
lects for beamforming is optimized, leads to tremendous energy
savings in spite of the additional CSI acquisition that such co-
operation necessitates.

V. CONCLUSION

The problem of decentralized routing in cooperative di-
versity wireless networks was cast as a stochastic network
control problem. This framework allowed us to consider two
significantly different variants of the problem that differ in
their underlying channel models and the channel knowledge
available within the network – slow fading and fast fading.
For both these models, we considered a class of transmission
policies which allowed local cooperative communication via
broadcasts and beamforming. The cooperative scheme was
computed by a graph induced by the local cooperative com-
munication schemes. For slow fading, we proposed a class of
cooperative policies which trade-off complexity and the degree
of decentralization with energy-efficiency. For fast fading,
we showed how to compute the optimal scheme in a class
of schemes, which allowed cooperation within a local relay
network, in a decentralized and efficient manner. The key to
reducing the computational complexity was to decouple the

7The range 42.0% to 44.4% occurs because the upper bound in (8) on the total
energy consumed exceeds the actual value by a factor that is at most 1.05.
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design of the local cooperation scheme from routing over the
induced super-graph. This approach works well because, with
high probability, a node cannot hear broadcasts from a distant
transmitter, nor is it very useful as a relay to beamform to a
distant receiver. Also, the route designs we arrived at were
scalable because the nodes used only locally available CSI to
determine their transmission powers.

We believe that the general framework for formulating the
cooperative communication routing problem as a decentralized
stochastic control problem, as well as our general approach of
computing local cooperative communication schemes to induce
a graph for routing, open up interesting avenues for future
work. One obvious question is that of deriving sub-optimal
policies with approximation bounds in the slow fading case.
For fast fading, the available CSI and its overhead depends
on the specifics of the physical mechanism used, for which
many different variants are possible. In addition to the ones
considered here, another extension is space-time codes.

APPENDIX A

Proof of Theorem 3.10: We will prove the result by contra-
diction. Note that the costs assigned to the edges of the graph
are strictly positive. Let us assume that there is a minimum cost
path, , given by , on the graph such that for
some ,

. Then at time , node has successfully decoded the
message. This time corresponds to a transmission used to for-
ward the message over some hop, from some node to node

, in the minimum cost path. Moreover, , and
. Now consider another path on graph

, where the sub-path is replaced by .
This new path has a lower total cost than the shortest path, .
Thus we have a contradiction. This completes the proof.

APPENDIX B

We now show how to compute the energy consumption for a
relay cooperation scheme (described in Section IV-C.II) param-
eterized by and for transmission of a message from

to using common neighbors as relays. Specifically, we focus
on the case where all the links undergo i.i.d. fading; the general
case is similar, and we refer the reader to [9] for the details. For
the case of i.i.d. channel gains we can parameterize the scheme
by (number of relays to which node broadcasts the mes-
sage) and (number of relays which beamform to forward the
message to node ). We denote the common mean channel gain
by . The average energy consumption to forward a message
from to using a relay cooperation scheme is given
by

(10)

where we recall that are the common neighbors of
and , and ( ) denotes the th ( th) ordered

channel gain from (to) ( ) to (from) the relays. Using the anal-
ysis in [9], we now provide closed form expressions which can
be evaluated in terms of Ei tables with an arbitrary accuracy
for each of the above terms. The derivations use a change of
variables to the differences between the ordered channel gains,
which turn out to be independent and exponentially distributed
[30]. We have, for ,

where is chosen such that

where is the number of relays. Such a
can be found using a bisection search since the function on the

left is an increasing function of . Also,

where, for ,

and, for ,

For , as discussed earlier, we allow for a finite outage
from the relay to ; this changes the analysis only slightly [9].
Computing an optimal scheme involves computing the above
expressions for each value of and , and comparing them to
obtain the optimal values of and .
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