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Abstract—Millimeter wave (mmWave) networks are sensitive
to blockages due to buildings in urban areas. This is critical for
vehicle-to-infrastructure networks which are cellular networks
designed to support emerging vehicular applications. Motivated
by measurement and ray tracing results in urban microcells,
instead of characterizing the pathloss by Euclidean distance, we
calculate it by the weighted sum of segment length along the
propagation path, i.e., Manhattan distance, and a certain corner
loss at the intersections along the path. We analyze network
performance by modeling the urban microcell network by a
Manhattan Poisson line process. Our results show significant
differences between Manhattan and Euclidean distance-based
pathloss models. Assuming the receiver is associated with the
base station (BS) with the smallest pathloss, we derive closed-
form expression of the distribution of the associated link pathloss.
We obtain the coverage probability and reveal the impacts of
interference from the LOS and NLOS BSs. It is shown that in
this scenario the interference from a NLOS parallel street is
negligible.

I. INTRODUCTION

Vehicle-to-Infrastructure (V2I) communication has appli-
cations in safety, traffic efficiency, and infotainment. Safety
applications can make use of gigabit-per-second data rates ex-
change of raw sensor data between vehicles and infrastructure
[1][2], which cannot be supported by conventional vehicu-
lar communication technologies, e.g., dedicated short-range
communication [2][3]. This motivates a cellular architecture
for V2I communication where base stations are located along
streets and provide service to vehicles. The use of millimeter
wave (mmWave) in cellular communication provides access
to high bandwidth communication channels, leading to the
potential for higher data rates and thus serves as a viable
approach to enable such high-rate transmissions [2].

Urban millimeter wave cellular networks have been widely
studied and analyzed over the past few years. Because both
streets and buildings are densely distributed, as shown in
Fig. 1, the effects of shadowing, building blockages, and
reflections should be taken into account while modeling the
propagation channel. Most prior analytical work is primarily
based on Euclidean distance-based pathloss models [4][5]. In
[6], buildings were modeled with random sizes and directions,
and the blockage probability was computed as a function of the
Euclidean length of the link. A correlated shadowing model
for urban wireless networks was proposed and analyzed in

[7] under an urban Manhattan network. Using a shadowing
based NLOS pathloss model, blockages were modeled by
the number of streets the propagation link crosses. Recently,
a spatially consistent pathloss model for urban mmWave
channels in microcells was proposed in [8]. It was shown
through the analysis of ray tracing data that (i) in urban
microcells, the Euclidean distance need not be a good measure
for the pathloss, and (ii) the pathloss exponent in urban street
canyons changes from streets to streets and is a function of
the street orientation. The pathloss exponents for each street
were obtained by straight-line fit of ray tracing data. Prior
analysis based on Euclidean distance blocking functions as in
[6] therefore does not necessarily apply for urban microcells.

Fig. 1. An example of urban vehicular network. The gray area represents
streets while other areas are buildings in the urban network. The solid black
line is LOS downlink, the dashed black line represents the NLOS downlink.
The severe blockage effects in mmWave communication make penetration
effects negligible.

In this paper, we analyze the ergodic network coverage in
urban microcellular networks. The analysis is based on (i)
modeling the urban street structure as a Manhatten Poisson
line process, and (ii) approximating the pathloss model of [8].
This allows us to retain the key physical features of mmWave
propagation in urban microcells while retaining mathematical
tractability. We analyze the performance of this mmWave
microcellular network where the base stations are randomly
located along those lines. Based on previous measurement
results in [8], we propose a pathloss model that is a function
of the segment lengths along the propagation link (Manhattan
distance) instead of Euclidean distance, as shown in Fig. 1.
Using this model, we derive the distribution of the associated
link pathloss and the SINR. We compare our approach to



other analyses of mmWave cellular networks using blocking
functions and Euclidean distance performance measurements
and find significant differences that justify using our more
realistic model. A result of our model is that coverage is
primarily determined by the base stations that are located on
the same street and cross street; interferers from NLOS parallel
streets contribute negligible interference.

II. SYSTEM MODEL

A. Pathloss Model

In this paper, the pathloss model considered is for the
an urban microcell download scenario. The dynamics of the
vehicle movement, and the shadowing variations within each
street, are not explicitly included. Based on ray tracing and
measurement results, [8] developed a pathloss model such
that the total pathloss consists of contributions from different
segments of the propagation path, with an extra corner loss
when the signal couples into a street with a different direction.
Ray tracing showed that the pathloss exponent varies along
individual streets with different locations and direction. In
this paper, we use a slightly modified form of the model,
which among other simplifications assumes that all of the
NLOS streets share the same pathloss exponent αN , while
the pathloss exponent for LOS street is αL. We denote the
distance of the LOS segment as dL and the set of length of
NLOS segments as DN . ∆ is the corner loss and M is the
number of corners the propagation path goes through. The
pathloss, which is a function of the Manhattan distance of the
propagation link, can be characterized as follows

PLdB(dL,DN ) = 10αL log10 dL + 10
∑
d̃∈DN

αN log10 d̃+M∆,

(1)

This pathloss model bears some resemblance to that in [9].
We illustrate the segment distances involved in the pathloss
model in Fig. 2.

Fig. 2. An illustration of our proposed pathloss model. The red line denotes
the propagation link of a NLOS BS on horizontal streets and the green line is
the propagation path of a NLOS BS on vertical streets. We use × to represent
one corner loss. For propagation link from a BS on NLOS vertical street, dL1

is the length of LOS segment, DN = {dN}. For BS on NLOS horizontal
street, dL2 is the LOS segment and DN = {dN1, dN2}.

B. Network Model

1) Manhattan Poisson Line Process Model: We model the
system as Manhattan network [10–12], which is similar to
[7]. Consider the Manhattan network on the two dimensional
Euclidean plane consisting of horizontal and vertical streets,
as shown in Fig. 2. Both the vertical and horizontal streets
are modeled as homogeneous Poisson point processes (PPP),
respectively denoted as Ψsv and Ψsh, and with intensity λsv
and λsh. Without loss of generality, we assume the receiver o
is located at the origin, on a horizontal street. We classify the
base stations (BSs) into three categories, respectively the LOS
BS denoted as φL, the NLOS BS on vertical streets φV and
NLOS BS on horizontal streets φH . BSs on vertical and hor-
izontal streets are also modeled as independent homogeneous
PPPs, and with intensity given by λtv and λth, respectively.

2) Signal-to-Interference-plus-Noise Ratio (SINR) : We as-
sume all links experience independent Rayleigh fading with
mean 1, h ∼ exp(1), since the main focus of the paper is to
propose an alternate distance-dependent pathloss model and
the assumption of same small scale fading is made to simplify
SINR coverage analysis. The corner gain is c = 10−∆/10, the
transmit power is normalized, i.e., PB = 1 and the noise is
denoted by N0. In this paper, we focus on the standard power
law attenuation function `(x), specifically we apply differnt
pathloss exponents to LOS and NLOS links, respectively,
which is `L(x) = x−αL for LOS links and `N (x) = x−αN

for NLOS links. Denote the associated link pathloss as u.
We denote the set of LOS link distances xL from receiver

o to the LOS BSs as ΦL. We use ΦV to represent the set
of lengths of the NLOS and LOS segments (xV , yV ) =
(dN , dL1) constituting the propagation path from the BSs
on vertical streets (see Fig. 2). Similarly, ΦH denotes the
set of distance (xH , yH , zH) = (dN1, dN2, dL2) which are
the Manhattan distances of NLOS and LOS segments of
the propagation link from the NLOS BSs on the horizontal
streets. To formulate the SINR, we first give the following
two assumptions.

Assumption 1. The receiver is associated with the BS with
the smallest pathloss.

Assumption 2. The probability that the receiver is associated
with a NLOS BS on a horizontal street is negligible.

Let u denote the pathloss from the receiver to the serving
BS. Conditioned on u, we have

SINR =
hu

N0 + IφL(o) + IφV (o) + IφH (o)
, (2)

where

IφL(o) =
∑

xL∈Φ′
L

h`L(xL), (3)

IφV (o) =
∑

(xV ,yV )∈Φ′
V

h`N (xV )`L(yV )c, (4)



and

IφH (o) =
∑

(xH ,yH ,zH)∈Φ′
H

h`N (xH)`N (yH)`L(zH)c2. (5)

Given Assumption 1, we further have the following con-
straints on the set Φ′L, Φ′V and Φ′H in (3-5)

Φ′L =
{
x ∈ ΦL

∣∣∣`L(x) < u
}
, (6)

Φ′V = {(x, y) ∈ ΦV

∣∣∣`N (x)`L(y)c < u}, (7)

Φ′H =
{

(x, y, z) ∈ ΦH

∣∣∣`N (x)`N (y)`L(z)c2 < u
}
. (8)

III. PERFORMANCE ANALYSIS

A. Distribution of the Associated link Pathloss

Given Assumption 1 and 2, we derive the cumulative density
function (CDF) of the associated link pathloss u via the
following lemma.

Lemma 1. The CDF F (u) of associated link pathloss is

F (u) = exp
(
−2λthu

− 1
αL

)
exp

(
−Cu−

1
αN

)
, (9)

where

C = 2λsvΓ

(
1− αL

αN

)(
2λtvc

1
αL

) αL
αN . (10)

Proof. Proof is omitted here to save space.

B. Blockage Probability

We compare our model with two different Euclidean dis-
tance based pathloss models. The first model computes the
pathloss directly by Euclidean distance d, where PLdB(d) =
10α̃ log10 d+∆1, and α̃ is the pathloss exponent, ∆1 is the off-
set for straight-line fit of this Euclidean pathloss model. In [6],
a key parameter for characterizing coverage in mmWave wire-
less networks is the distance dependent blockage probability.
In the urban microcell downlink scenario, we define it as pB(d)
and apply different pathloss exponents α̃L and α̃N for un-
blocked (LOS) and blocked (NLOS) links. The pathloss is cal-
culated by PLdB(d) = (1− I(pB(d)))

(
10α̃L log10 d+ ∆L

2

)
+

I(pB(d))
(
10α̃N log10 d+ ∆N

2

)
, where I(x) is the Bernoulli

function with parameter x, ∆L
2 and ∆N

2 are respectively the
offsets for the LOS and NLOS case.

We provide the following lemma giving the blockage proba-
bility in [6] with respect to the Euclidean distance under MPLP
model.

Lemma 2. The blockage probability of a propagation link
from a BS at Euclidean distance d is

pB(d) = 1− 1− exp(−2d(λsh + λsv))

2d(λsh + λsv)
. (11)

Proof. Proof is omitted for space reasons.

C. Coverage Analysis and Simplification

Conditioning on associated link pathloss u, we denote the
coverage probability as pc(u, T )

pc(u, T ) = P (SINR > T |u) . (12)

We can then formulate the coverage probability as

pc(u, T ) = P (SINR > T |u)

= E
[
exp

(
−Tu−1 (N0 + IφL(o) + IφV (o) + IφH (o))

)]
= exp(−TN0u

−1)LIφL (Tu−1)LIφV +IφH
(Tu−1)

≈ exp(−TN0u
−1)LIφL (Tu−1)LIφV (Tu−1), (13)

where L(·) is the Laplace transform of (·).
Note that since the interference from the NLOS vertical

and horizontal streets are correlated due to the shared paths,
the Laplace transform of the total interference of these two
parts of cannot be split up just by direct multiplication. If
the interference from the NLOS horizontal interferers can be
completely neglected (which will be proved analytically in
Section III-D) then, the coverage probability can be given in
the following theorem.

Theorem 1. Conditioning on the associated link pathloss as
u, the coverage probability can be given by

pc(u, T ) = exp(−C1u
−1) exp(−C2u

− 1
αL ) exp

(
−C3u

− 1
αN

)
,

(14)

where the constants are respectively

C1 = TN0, C2 = 2λth%,

C3 = C%
αL
αN , % =

∫ ∞
1

1

1 + T−1µαL
dx, (15)

and C in C3 is given in (10).

Proof. The proof follows the idea of conditioning on the
associated link pathloss u and combining constraints in (3-
5) first, details of which are omitted here to save space.

The coverage probability Pc(T ) can be derived by averaging
over the associated link pathloss as

Pc(T ) =

∫ ∞
0

fU (u)pc(u, T )du, (16)

where fU (u) is the probability density function of U (obtained
from (9)) and pc(u, T ) is given in (14).

D. The Effect of LOS and NLOS Interferers

In the case when the receiver is associated with a LOS BS,
we provide a rigorous proof for our previous assumption that
interference from NLOS BS on horizontal streets is negligible.
In addition, by utilizing Jensen’s inequality, we compare the
different effects of interference from LOS BSs φL and BS on
vertical streets φV .

Assuming that the receiver is associated to a LOS BS at
distance r, i.e., u = r−αL , we derive the Laplace transform of
NLOS horizontal interferers φH in the following proposition.



Proposition 1. The Laplace transform of the interference from
the NLOS horizontal streets IφH is given by

LIφH (Tu−1) = LIφH (TrαL)

≈ 2λsv

√
2κ

λsv
K1

(
2
√

2κλsv

)
, (17)

where

κ = 2λshΓ

(
1− αL

αN

)[
2λthr%c

2
αL

] αL
αN , (18)

and K1(·) is the 1-st order modified Bessel’s function of the
second kind [13].

Proof. Details of the proof are omitted for space reasons.

Based on the property of the modified Bessel function, when
the argument µ of K1(µ) becomes small, we can approximate
it as [14]

K1(µ) ∼ µ−1. (19)

In our case, it can be seen that the argument inside the
modified Bessel function in (17) is very small since it scales

with λshλ
αL
αN

th . The corner loss term further reduces the value
to a large extent, which makes (19) a feasible approximation.
Consequently, we show that the integral in (17) reduces to

LIφH (TrαL) ≈ 2λsv

√
2κ

λsv

(
2
√

2κλsv

)−1

= 1. (20)

With the Laplace transform LIφH (TrαL) ≈ 1, we can con-
clude that the correlation between the interference of IΦH and
IΦV and the interference IΦH itself is negligible. This justifies
the previous assumption of ignoring the NLOS horizontal
interferers in Section III-C and the approximation we made
in (13).

Next, we compare the interference from LOS BSs and
NLOS BSs from vertical streets. The comparison is based on
the individual Laplace transform of the interference.

The Laplace transform of the interference due to the LOS
BSs is LIφL (Tu−1) = LIφL (TrαL) = Er [exp(−ω(2λth)r)]
and the Laplace transform of NLOS interference due to BSs
on the vertical streets is LIφV (Tu−1) = LIφV (TrαL) =

Er
[
exp(−ϑλsv(2λtvr)

αL
αN )

]
(given in (15), Theorem 1), where

ω and ϑ are respectively two constants independent of the
intensity of streets and BSs. Define two convex functions
ϕ1(r) = exp(−r) and ϕ2(r) = exp(−r

αL
αN ). Using Jensen’s

inequality,

LIφL (TrαL) ≥ exp (−ωEr [2λthr]) . (21)

Since r is the distance from the receiver to the closest LOS
BS, according to the void probability of PPP, r ∼ exp(2λth)
[15], the expectation in the exponent of (21) evaluates to 1.

Similar application of Jensen’s inequality on Laplace trans-
form of IφV results in

LIφV (TrαL) ≥ exp
(
−ϑλsvEr

[
(2λtvr)

αL
αN

])
. (22)

The expectation term in (22) can be evaluated as follows

Er
[
(2λtvr)

αL
αN

]
=

∫ ∞
0

(2λtv)
αL
αN r

αL
αN exp(−2λthr)dr

=

(
λtv

λth

) αL
αN

Γ

(
1 +

αL
αN

)
. (23)

Therefore

LIφV (TrαL) ≥ exp

(
−ϑλsv

(
λtv

λth

) αL
αN

Γ

(
1 +

αL
αN

))
.

(24)

From (24), it can be seen that the lower bound of Laplace
transform of IφV scales exponentially with the street intensity
λsv, which yields an intuitive result that when street intensity
increases, the effects by interferers on vertical streets become
more prominent.

IV. NUMERICAL RESULTS

We compare our model and the two models demonstrated in
Section III-B in terms of the coverage probability and ergodic
capacity in Fig. 3 and Fig. 4. It is shown that the three models
show significant difference in coverage probability and ergodic
capacity. This motivates us to do further theoretical analysis
in our proposed model.

In Fig. 5, we validate our result of associated link pathloss
distribution given in Lemma 1. It can be seen that the distribu-
tion of the associated link pathloss considering and neglecting
the probability of association with a NLOS horizontal BS is
the same. This verifies Assumption 2 where we only consider
the association case with LOS BSs and NLOS BSs on vertical
streets.

Fig. 6 compares the numerical result of coverage probabil-
ity with and without NLOS interferers on horizontal streets
against the theoretical result given in Theorem 1. It is seen
that the analytical result matches well with the numerical
results. Also, the coverage probability with horizontal NLOS
interferers coincides with that without the horizontal NLOS in-
terferers. This verifies the analysis in Section III-D concerning
the negligible effects of NLOS interference on parallel streets.

V. CONCLUSION

This paper proposed a new pathloss model under the urban
mmWave microcells which computes the pathloss based on
Manhattan distance instead of the Euclidean distance. We
provided a tractable framework to analyze the new model in
terms of the coverage probability. We also compared effects
of interference from LOS streets and NLOS streets.
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Fig. 3. Comparison of three models in terms of ergodic capacity against the
SNR at BS.
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Fig. 4. Comparison of three models in terms of coverage probability against
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